Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 162(6): 1621-1631, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33323888

ABSTRACT

ABSTRACT: There is a long-held belief that physical activities such as lifting with a flexed spine is generally harmful for the back and can cause low back pain (LBP), potentially reinforcing fear-avoidance beliefs underlying pain-related fear. In patients with chronic LBP, pain-related fear has been shown to be associated with reduced lumbar range of motion during lifting, suggesting a protective response to pain. However, despite short-term beneficial effects for tissue health, recent evidence suggests that maintaining a protective trunk movement strategy may also pose a risk for (persistent) LBP due to possible pronociceptive consequences of altered spinal motion, potentially leading to increased loading on lumbar tissues. Yet, it is unknown if similar protective movement strategies already exist in pain-free individuals, which would yield potential insights into the role of fear-avoidance beliefs in motor behavior in the absence of pain. Therefore, the aim of this study is to test whether fear-avoidance beliefs influence spinal motion during lifting in a healthy cohort of pain-free adults without a history of chronic pain. The study subjects (N = 57) filled out several pain-related fear questionnaires and were asked to perform a lifting task (5kg-box). High-resolution spinal kinematics were assessed using an optical motion capturing system. Time-sensitive analyses were performed based on statistical parametric mapping. The results demonstrated time-specific and negative relationships between self-report measures of pain-related fear and lumbar spine flexion angles during lifting, indicating potential unfavorable interactions between psychological factors and spinal motion during lifting in pain-free subjects.


Subject(s)
Lifting , Low Back Pain , Adult , Fear , Humans , Movement , Range of Motion, Articular
2.
J Biomech ; 108: 109883, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32635997

ABSTRACT

Non-specific chronic low back pain (NSCLBP) is a major health problem, affecting about one fifth of the population worldwide. To avoid further pain or injury, patients with NSCLBP seem to adopt a stiffer movement pattern during everyday living activities. However, it remains unknown how NSCLBP affects the lumbar lordosis angle (LLA) during repetitive activities such as walking or running. This pilot study therefore aimed at exploring possible NSCLBP-related alterations in LLAs during walking and running by focusing on discrete parameters as well as continuous data. Thirteen patients with NSCLBP and 20 healthy pain-free controls were enrolled and underwent a full-body movement analysis involving various everyday living activities such as standing, walking and running. LLAs were derived from markers placed on the spinous processes of the vertebrae L1-L5 and S1. Possible group differences in discrete (average and range of motion (ROM)) and continuous LLAs were analyzed descriptively using mean differences with confidence intervals ranging from 95% to 75%. Patients with NSCLBP indicated reduced average LLAs during standing, walking and running and a tendency for lower LLA-ROM during walking. Analyses of continuous data indicated the largest group differences occurring around 25% and 70% of the walking and 25% and 75% of the running cycle. Furthermore, patients indicated a reversed movement pattern during running, with increasing instead of a decreasing LLAs after foot strike. This study provides preliminary evidence that NSCLBP might affect LLAs during walking and running. These results can be used as a basis for future large-scale investigations involving hypothesis testing.


Subject(s)
Lordosis , Low Back Pain , Humans , Lumbar Vertebrae , Pilot Projects , Range of Motion, Articular , Walking
3.
J Biomech ; 100: 109593, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31898974

ABSTRACT

Quantifying lumbar back motion during functional activities in real-life environments may contribute to a better understanding of common pathologies such as spinal disorders. The current study therefore aimed at the comparative evaluation of the Epionics SPINE system, a portable device for measuring sagittal lumbar back motion during functional activities. Twenty healthy participants were therefore evaluated with the Epionics SPINE and a Vicon motion capture system in two identical separate research visits. They performed the following activities: standing, sitting, chair rising, box lifting, walking, running and a counter movement jump (CMJ). Lumbar lordosis angles were extracted as continuous values as well as average and range of motion (ROM) parameters. Agreement between the systems was evaluated using Bland-Altman analyses, whereas within- and between-session reliability were assessed using intraclass correlation coefficients (ICC) and minimal detectable changes (MDC). The analysis showed excellent agreement between the systems for chair rising, box lifting and CMJ with a systematic underestimation of lumbar lordosis angles during walking and running. Reliability was moderate to high for all continuous and discrete parameters (ICC ≥ 0.62), except for ROM during running (ICC = 0.29). MDC values were generally below 15°, except for CMJ (peak values up to 20° within and 25° between the sessions). The Epionics SPINE system performed similarly to a Vicon motion capture system for measuring lumbar lordosis angles during functional activities and showed high consistency within and between measurement sessions. These findings can serve researchers and clinicians as a bench mark for future investigations using the system in populations with spinal pathologies.


Subject(s)
Lumbar Vertebrae/physiology , Monitoring, Physiologic/instrumentation , Movement , Stress, Mechanical , Adult , Female , Humans , Lordosis/physiopathology , Lumbar Vertebrae/physiopathology , Male , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...