Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Horiz ; 8(4): 460-472, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36825603

ABSTRACT

Extracellular vesicles (EVs) are routinely released from nearly all cell types as transport vehicles and for cell communication. Crucially, they contain biomolecular content for the identification of health and disease states that can be detected from readily accessible physiological fluids, including urine, plasma, or saliva. Despite their clinical utility within noninvasive diagnostic platforms such as liquid biopsies, the currently available portfolio of analytical approaches are challenged by EV heterogeneity in size and composition, as well as the complexity of native biofluids. Quartz crystal microbalance with dissipation monitoring (QCM-D) has recently emerged as a powerful alternative for the phenotypic detection of EVs, offering multiple modes of analyte discrimination by frequency and dissipation. While providing rich data for sensor development, further progress is required to reduce detection limits and fully exploit the technique's potential within biosensing. Herein, we investigate the impact of nanostructuring the sensor electrode surface for enhancing its detection capabilities. We employ self-assembly of the block copolymer polystyrene-block-poly(4-vinylpyridine) to create well defined 2D gold islands via selective impregnation of the pyridine domain with gold precursors and subsequent removal of the template. When matched to the EV length scale, we find a 4-fold improvement in sensitivity despite a 4-fold reduction in area for analyte and ligand anchoring in comparison to a flat sensor surface. Creation of tailored and confined sensing regions interspersed by non-binding silica provides optimal spatial orientation for EV capture with reduced steric effects and negative cooperativity of grafted antibodies, offering a promising route for facilitated binding and enhanced performance of sensor platforms.


Subject(s)
Extracellular Vesicles , Nanostructures , Gold/chemistry , Polymers , Quartz Crystal Microbalance Techniques
2.
Article in English | MEDLINE | ID: mdl-35999185

ABSTRACT

Research into extracellular vesicles (EVs) has grown significantly over the last few decades with EVs being widely regarded as a source of biomarkers for human health and disease with massive clinical potential. Secreted by every cell type in the body, EVs report on the internal cellular conditions across all tissue types. Their presence in readily accessible biofluids makes the potential of EV biosensing highly attractive as a noninvasive diagnostic platform via liquid biopsies. However, their small size (50-250 nm), inherent heterogeneity, and the complexity of the native biofluids introduce challenges for effective characterization, thus, limiting their clinical utility. This has led to a surge in the development of various novel EV biosensing techniques, with capabilities beyond those of conventional methods that have been directly transferred from cell biology. In this review, key detection principles used for EV biosensing are summarized, with a focus on some of the most recent and fundamental developments in the field over the last 5 years. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.


Subject(s)
Biosensing Techniques , Exosomes , Extracellular Vesicles , Humans , Exosomes/metabolism , Extracellular Vesicles/metabolism , Biomarkers
3.
ACS Appl Nano Mater ; 5(9): 12951-12961, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36185167

ABSTRACT

Extracellular vesicles (EVs) are nanosized circulating assemblies that contain biomarkers considered promising for early diagnosis within neurology, cardiology, and oncology. Recently, acoustic wave biosensors, in particular based on quartz crystal microbalance with dissipation monitoring (QCM-D), have emerged as a sensitive, label-free, and selective EV characterization platform. A rational approach to further improving sensing detection limits relies on the nanostructuration of the sensor surfaces. To this end, inorganic inverse opals (IOs) derived from colloidal self-assembly present a highly tunable and scalable nanoarchitecture of suitable feature sizes and surface chemistry. This work systematically investigates their use in two-dimensional (2D) and three-dimensional (3D) for enhanced QCM-D EV detection. Precise tuning of the architecture parameters delivered improvements in detection performance to sensitivities as low as 6.24 × 107 particles/mL. Our findings emphasize that attempts to enhance acoustic immunosensing via increasing the surface area by 3D nanostructuration need to be carefully analyzed in order to exclude solvent and artifact entrapment effects. Moreover, the use of 2D nanostructured electrodes to compartmentalize analyte anchoring presents a particularly promising design principle.

5.
Anal Chem ; 94(5): 2465-2475, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35072456

ABSTRACT

The biomolecular contents of extracellular vesicles, such as exosomes, have been shown to be crucial in intercellular communication and disease propagation. As a result, there has been a recent surge in the exploration of novel biosensing platforms that can sensitively and specifically detect exosomal content such as proteins and nucleic acids, with a view toward application in diagnostic assays. Here, we demonstrate dual-mode and label-free detection of plasma exosomes using an electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). The platform adopts a direct immunosensing approach to effectively capture exosomes via their surface protein expression of CD63. By combining QCM-D with a tandem in situ electrochemical impedance spectroscopy measurement, we are able to demonstrate relationships between mass, viscoelasticity and impedance inducing properties of each functional layer and analyte. In addition to lowering the limit of detection (by a factor of 2-4) to 6.71 × 107 exosome-sized particles (ESP) per mL in 25% v/v serum, the synergy between dissipation and impedance response introduces improved sensing specificity by offering further distinction between soft and rigid analytes, thereby promoting EQCM-D as an important technique for exosome analysis.


Subject(s)
Biosensing Techniques , Exosomes , Nucleic Acids , Biosensing Techniques/methods , Electric Impedance , Quartz , Quartz Crystal Microbalance Techniques/methods
6.
Nanoscale ; 12(35): 18455-18462, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32941587

ABSTRACT

Mesoporous inorganic thin films are promising materials architectures for a variety of applications, including sensing, catalysis, protective coatings, energy generation and storage. In many cases, precise control over a bicontinuous porous network on the 10 nm length scale is crucial for their operation. A particularly promising route for structure formation utilizes block copolymer (BCP) micelles in solution as sacrificial structure-directing agents for the co-assembly of inorganic precursors. This method offers pore size control via the molecular weight of the pore forming block and is compatible with a broad materials library. On the other hand, the molecular weight dependence impedes continuous pore tuning and the intrinsic polymer dispersity presents challenges to the pore size homogeneity. To this end, we demonstrate how chromatographic fractionation of BCPs provides a powerful method to control the pore size and dispersity of the resulting mesoporous thin films. We apply a semi-preparative size exclusion chromatographic fractionation to a polydisperse poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO) BCP obtained from scaled-up synthesis. The isolation of BCP fractions with distinct molecular weight and narrowed dispersity allowed us to not only tune the characteristic pore size from 9.1 ± 1.5 to 14.1 ± 2.1 nm with the identical BCP source material, but also significantly reduce the pore size dispersity compared to the non-fractionated BCP. Our findings offer a route to obtain a library of monodisperse BCPs from a polydisperse feedstock and provide important insights on the direct relationship between macromolecular characteristics and the resulting structure-directed mesopores, in particular related to dispersity.

7.
Anal Chem ; 92(5): 4082-4093, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31995983

ABSTRACT

Exosomes are endocytic lipid-membrane bound bodies with the potential to be used as biomarkers in cancer and neurodegenerative disease. The limitations and scarcity of current exosome characterization approaches have led to a growing demand for translational techniques, capable of determining their molecular composition and physical properties in physiological fluids. Here, we investigate label-free immunosensing, using a quartz crystal microbalance with dissipation monitoring (QCM-D), to detect exosomes by exploiting their surface protein profile. Exosomes expressing the transmembrane protein CD63 were isolated by size-exclusion chromatography from cell culture media. QCM-D sensors functionalized with anti-CD63 antibodies formed a direct immunoassay toward CD63-positive exosomes in 75% v/v serum, exhibiting a limit-of-detection of 2.9 × 108 and 1.4 × 108 exosome sized particles (ESPs)/mL for frequency and dissipation response, respectively, i.e., clinically relevant concentrations. Our proof-of-concept findings support the adoption of dual-mode acoustic analysis of exosomes, leveraging both frequency and dissipation monitoring for use in bioanalytical characterization.


Subject(s)
Exosomes/chemistry , Quartz Crystal Microbalance Techniques/methods , Antibodies/immunology , Exosomes/metabolism , Humans , Immunoassay , Limit of Detection , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Tetraspanin 30/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...