Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Cell Biol ; 18(6): 645-656, 2016 06.
Article in English | MEDLINE | ID: mdl-27214280

ABSTRACT

Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.


Subject(s)
Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Prostatic Neoplasms/metabolism , Animals , Disease Models, Animal , Energy Metabolism/physiology , Heat-Shock Proteins/metabolism , Humans , Male , Mice , Neoplasm Metastasis/pathology , Prostatic Neoplasms/pathology , Receptors, Estrogen/metabolism , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...