Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Ecol Evol ; 14(4): e11237, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38633526

ABSTRACT

Graphs in research articles can increase the comprehension of statistical data but may mislead readers if poorly designed. We propose a new plot type, the sea stack plot, which combines vertical histograms and summary statistics to represent large univariate datasets accurately, usefully, and efficiently. We compare five commonly used plot types (dot and whisker plots, boxplots, density plots, univariate scatter plots, and dot plots) to assess their relative strengths and weaknesses when representing distributions of data commonly observed in biological studies. We find the assessed plot types are either difficult to read at large sample sizes or have the potential to misrepresent certain distributions of data, showing the need for an improved method of data visualisation. We present an analysis of the plot types used in four ecology and conservation journals covering multiple areas of these research fields, finding widespread use of uninformative bar charts and dot and whisker plots (60% of all panels showing univariate data from multiple groups for the purpose of comparison). Some articles presented more informative figures by combining plot types (16% of panels), generally boxplots and a second layer such as a flat density plot, to better display the data. This shows an appetite for more effective plot types within conservation and ecology, which may further increase if accurate and user-friendly plot types were made available. Finally, we describe sea stack plots and explain how they overcome the weaknesses associated with other alternatives to uninformative plots when used for large and/or unevenly distributed data. We provide a tool to create sea stack plots with our R package 'seastackplot', available through GitHub.

2.
Trends Ecol Evol ; 39(1): 89-100, 2024 01.
Article in English | MEDLINE | ID: mdl-38114339

ABSTRACT

We present the results of our 15th horizon scan of novel issues that could influence biological conservation in the future. From an initial list of 96 issues, our international panel of scientists and practitioners identified 15 that we consider important for societies worldwide to track and potentially respond to. Issues are novel within conservation or represent a substantial positive or negative step-change with global or regional extents. For example, new sources of hydrogen fuel and changes in deep-sea currents may have profound impacts on marine and terrestrial ecosystems. Technological advances that may be positive include benchtop DNA printers and the industrialisation of approaches that can create high-protein food from air, potentially reducing the pressure on land for food production.


Subject(s)
Biodiversity , Ecosystem , Conservation of Natural Resources , Forecasting , Food
3.
Proc Natl Acad Sci U S A ; 120(44): e2302440120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871198

ABSTRACT

Seed dispersal by frugivores is a fundamental function for plant community dynamics in fragmented landscapes, where forest remnants are typically embedded in a matrix of anthropogenic habitats. Frugivores can mediate both connectivity among forest remnants and plant colonization of the matrix. However, it remains poorly understood how frugivore communities change from forest to matrix due to the loss or replacement of species with traits that are less advantageous in open habitats and whether such changes ultimately influence the composition and traits of dispersed plants via species interactions. Here, we close this gap by using a unique dataset of seed-dispersal networks that were sampled in forest patches and adjacent matrix habitats of seven fragmented landscapes across Europe. We found a similar diversity of frugivores, plants, and interactions contributing to seed dispersal in forest and matrix, but a high turnover (replacement) in all these components. The turnover of dispersed seeds was smaller than that of frugivore communities because different frugivore species provided complementary seed dispersal in forest and matrix. Importantly, the turnover involved functional changes toward larger and more mobile frugivores in the matrix, which dispersed taller, larger-seeded plants with later fruiting periods. Our study provides a trait-based understanding of frugivore-mediated seed dispersal through fragmented landscapes, uncovering nonrandom shifts that can have cascading consequences for the composition of regenerating plant communities. Our findings also highlight the importance of forest remnants and frugivore faunas for ecosystem resilience, demonstrating a high potential for passive forest restoration of unmanaged lands in the matrix.


Subject(s)
Ecosystem , Seed Dispersal , Forests , Seeds , Fruit , Trees
5.
PLoS One ; 18(6): e0285478, 2023.
Article in English | MEDLINE | ID: mdl-37310957

ABSTRACT

Many publications lack sufficient background information (e.g. location) to be interpreted, replicated, or reused for synthesis. This impedes scientific progress and the application of science to practice. Reporting guidelines (e.g. checklists) improve reporting standards. They have been widely taken up in the medical sciences, but not in ecological and agricultural research. Here, we use a community-centred approach to develop a reporting checklist (AgroEcoList 1.0) through surveys and workshops with 23 experts and the wider agroecological community. To put AgroEcoList in context, we also assessed the agroecological community's perception of reporting standards in agroecology. A total of 345 researchers, reviewers, and editors, responded to our survey. Although only 32% of respondents had prior knowledge of reporting guidelines, 76% of those that had said guidelines improved reporting standards. Overall, respondents agreed on the need of AgroEcolist 1.0; only 24% of respondents had used reporting guidelines before, but 78% indicated they would use AgroEcoList 1.0. We updated AgroecoList 1.0 based on respondents' feedback and user-testing. AgroecoList 1.0 consists of 42 variables in seven groups: experimental/sampling set-up, study site, soil, livestock management, crop and grassland management, outputs, and finances. It is presented here, and is also available on github (https://github.com/AgroecoList/Agroecolist). AgroEcoList 1.0 can serve as a guide for authors, reviewers, and editors to improve reporting standards in agricultural ecology. Our community-centred approach is a replicable method that could be adapted to develop reporting checklists in other fields. Reporting guidelines such as AgroEcoList can improve reporting standards and therefore the application of research to practice, and we recommend that they are adopted more widely in agriculture and ecology.


Subject(s)
Agriculture , Checklist , Animals , Soil , Knowledge , Livestock
7.
Conserv Biol ; 37(1): e13967, 2023 02.
Article in English | MEDLINE | ID: mdl-35694785

ABSTRACT

Although some sectors have made significant progress in learning from failure, there is currently limited consensus on how a similar transition could best be achieved in conservation and what is required to facilitate this. One of the key enabling conditions for other sectors is a widely accepted and standardized classification system for identifying and analyzing root causes of failure. We devised a comprehensive taxonomy of root causes of failure affecting conservation projects. To develop this, we solicited examples of real-life conservation efforts that were deemed to have failed in some way, identified their underlying root causes of failure, and used these to develop a generic, 3-tier taxonomy of the ways in which projects fail, at the top of which are 6 overarching cause categories that are further divided into midlevel cause categories and specific root causes. We tested the taxonomy by asking conservation practitioners to use it to classify the causes of failure for conservation efforts they had been involved in. No significant gaps or redundancies were identified during this testing phase. We then analyzed the frequency that particular root causes were encountered by projects within this test sample, which suggested that some root causes were more likely to be encountered than others and that a small number of root causes were more likely to be encountered by projects implementing particular types of conservation action. Our taxonomy could be used to improve identification, analysis, and subsequent learning from failed conservation efforts, address some of the barriers that currently limit the ability of conservation practitioners to learn from failure, and contribute to establishing an effective culture of learning from failure within conservation.


Introducción de una taxonomía común como apoyo al aprendizaje a partir del fracaso en la conservación Resumen Mientras que algunos sectores han progresado significativamente en el aprendizaje a partir del fracaso, actualmente hay un consenso limitado sobre cómo podría lograrse una transición similar en la conservación y qué se requiere para facilitarla. Una de las condiciones habilitantes más importantes en otros sectores es un sistema de clasificación estandarizado y aceptado por la mayoría para la identificación y análisis de las causas fundamentales del fracaso. Diseñamos una taxonomía completa de las causas fundamentales del fracaso que afecta a los proyectos de conservación. Para desarrollarla, solicitamos ejemplos de esfuerzos de conservación reales que de alguna manera se consideraron como fracasos, identificamos las causas fundamentales no aparentes de su fracaso y luego las usamos para desarrollar una taxonomía genérica de tres niveles de las maneras en las que fracasan los proyectos, en cuyo nivel superior están seis categorías de causas generales que después se dividen en categorías de nivel medio de categorías de causas y causas fundamentales específicas. Pusimos a prueba la taxonomía al pedirle a los practicantes de la conservación que la usaran para clasificar las causas del fracaso de los esfuerzos de conservación en los que han participado. No identificamos vacíos o redundancias importantes durante esta fase de prueba. Después, analizamos la frecuencia con la que los proyectos de esta muestra se enfrentaron a causas fundamentales particulares, lo que sugirió que algunas causas fundamentales tienen mayor probabilidad de ocurrir y que un número reducido de causas fundamentales tiene mayor probabilidad de ocurrir en proyectos que implementan ciertos tipos de acciones de conservación. Nuestra taxonomía podría usarse para mejorar el análisis, identificación y aprendizaje subsecuente a partir del fracaso de los esfuerzos de conservación; tratar algunas de las barreras que en la actualidad limitan a los practicantes de la conservación a aprender del fracaso; y contribuir al establecimiento de una cultura efectiva del aprendizaje a partir del fracaso dentro de la conservación.


Subject(s)
Conservation of Natural Resources , Terminology as Topic
8.
Trends Ecol Evol ; 38(1): 96-107, 2023 01.
Article in English | MEDLINE | ID: mdl-36460563

ABSTRACT

We present the results of our 14th horizon scan of issues we expect to influence biological conservation in the future. From an initial set of 102 topics, our global panel of 30 scientists and practitioners identified 15 issues we consider most urgent for societies worldwide to address. Issues are novel within biological conservation or represent a substantial positive or negative step change at global or regional scales. Issues such as submerged artificial light fisheries and accelerating upper ocean currents could have profound negative impacts on marine or coastal ecosystems. We also identified potentially positive technological advances, including energy production and storage, improved fertilisation methods, and expansion of biodegradable materials. If effectively managed, these technologies could realise future benefits for biological diversity.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Forecasting , Fisheries
9.
Ambio ; 52(2): 411-424, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36287382

ABSTRACT

Foresight science is a systematic approach to generate future predictions for planning and management by drawing upon analytical and predictive tools to understand the past and present, while providing insights about the future. To illustrate the application of foresight science in conservation, we present three case studies: identification of emerging risks to conservation, conservation of at-risk species, and aid in the development of management strategies for multiple stressors. We highlight barriers to mainstreaming foresight science in conservation including knowledge accessibility/organization, communication across diverse stakeholders/decision makers, and organizational capacity. Finally, we investigate opportunities for mainstreaming foresight science including continued advocacy to showcase its application, incorporating emerging technologies (i.e., artificial intelligence) to increase capacity/decrease costs, and increasing education/training in foresight science via specialized courses and curricula for trainees and practicing professionals. We argue that failure to mainstream foresight science will hinder the ability to achieve future conservation objectives in the Anthropocene.


Subject(s)
Artificial Intelligence , Conservation of Natural Resources , Forecasting
10.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Article in English | MEDLINE | ID: mdl-35798839

ABSTRACT

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Subject(s)
Biodiversity , Ecosystem , Animals , Climate Change , Humans
12.
Bioscience ; 72(5): 461-471, 2022 May.
Article in English | MEDLINE | ID: mdl-35592057

ABSTRACT

Wildlife conservation is severely limited by funding. Therefore, to maximize biodiversity outcomes, assessing financial costs of interventions is as important as assessing effectiveness. We reviewed the reporting of costs in studies testing the effectiveness of conservation interventions: 13.3% of the studies provided numeric costs, and 8.8% reported total costs. Even fewer studies broke down these totals into constituent costs, making it difficult to assess the relevance of costs to different contexts. Cost reporting differed between continents and the taxa or habitats targeted by interventions, with higher cost reporting in parts of the Global South. A further analysis of data focused on mammals identified that interventions related to agriculture, invasive species, transport, and residential development reported costs more frequently. We identify opportunities for conservationists to improve future practice through encouraging systematic reporting and collation of intervention costs, using economic evaluation tools, and increasing understanding and skills in finance and economics.

13.
Ecol Appl ; 32(7): e2678, 2022 10.
Article in English | MEDLINE | ID: mdl-35588196

ABSTRACT

Widespread afforestation is a crucial component of climate mitigation strategies worldwide. This presents a significant opportunity for biodiversity conservation if forests are appropriately managed. Within forests, structural and habitat diversity are known to be critical for biodiversity but pragmatic management recommendations are lacking. We make a comprehensive assessment of the effects of habitat variables on bird populations using data from over 4000 ha of forested landscape. We combine high-resolution remote sensing data with comprehensive management databases to classify habitat attributes and measure the response of six taxonomic and functional diversity metrics: species richness, Shannon diversity, functional richness, functional evenness, functional divergence, and functional dispersion. We use a novel approach that combines hierarchical partitioning analysis with linear models to determine the relative importance of different habitat variables for each bird diversity metric. The age class of forest stands was consistently the most important variable across all bird diversity metrics, outperforming other structural measures such as horizontal and vertical heterogeneity and canopy density. Shrub density and gap fraction were each significantly associated with one bird diversity metric. In contrast, variables describing within-stand structural heterogeneity (vertical and horizontal) were generally less important while tree species identity (e.g., conifer or broadleaved) was not significant for any bird diversity metric. Each of the six bird diversity metrics had different patterns of independent variable importance and significance, emphasizing the need to consider multiple diversity metrics in biodiversity assessments. Similarly, the optimal resolution for remote sensing metrics varied between structural variables and bird diversity metrics, suggesting that the use of remote sensing data in biodiversity studies could be greatly improved by first exploring different resolutions and data aggregations. Based on the results from this comprehensive study, we recommend that managers focus on creating habitat diversity at the between-, rather than exclusively within-stand scale, such as by creating a matrix of different age classes, to maximize bird diversity. This recommendation for forest managers is powerful yet pragmatic in its simplicity.


Subject(s)
Forests , Plant Breeding , Animals , Biodiversity , Birds/physiology , Ecosystem
14.
Nature ; 605(7908): 103-107, 2022 05.
Article in English | MEDLINE | ID: mdl-35444280

ABSTRACT

International policy is focused on increasing the proportion of the Earth's surface that is protected for nature1,2. Although studies show that protected areas prevent habitat loss3-6, there is a lack of evidence for their effect on species' populations: existing studies are at local scale or use simple designs that lack appropriate controls7-13. Here we explore how 1,506 protected areas have affected the trajectories of 27,055 waterbird populations across the globe using a robust before-after control-intervention study design, which compares protected and unprotected populations in the years before and after protection. We show that the simpler study designs typically used to assess protected area effectiveness (before-after or control-intervention) incorrectly estimate effects for 37-50% of populations-for instance misclassifying positively impacted populations as negatively impacted, and vice versa. Using our robust study design, we find that protected areas have a mixed impact on waterbirds, with a strong signal that areas managed for waterbirds or their habitat are more likely to benefit populations, and a weak signal that larger areas are more beneficial than smaller ones. Calls to conserve 30% of the Earth's surface by 2030 are gathering pace14, but we show that protection alone does not guarantee good biodiversity outcomes. As countries gather to agree the new Global Biodiversity Framework, targets must focus on creating and supporting well-managed protected and conserved areas that measurably benefit populations.


Subject(s)
Birds , Conservation of Natural Resources , Animals , Biodiversity , Ecosystem
15.
Conserv Biol ; 36(1): e13721, 2022 02.
Article in English | MEDLINE | ID: mdl-33595149

ABSTRACT

Species monitoring, defined here as the repeated, systematic collection of data to detect long-term changes in the populations of wild species, is a vital component of conservation practice and policy. We created a database of nearly 1200 schemes, ranging in start date from 1800 to 2018, to review spatial, temporal, taxonomic, and methodological patterns in global species monitoring. We identified monitoring schemes through standardized web searches, an online survey of stakeholders, in-depth national searches in a sample of countries, and a review of global biodiversity databases. We estimated the total global number of monitoring schemes operating at 3300-15,000. Since 2000, there has been a sharp increase in the number of new schemes being initiated in lower- and middle-income countries and in megadiverse countries, but a decrease in high-income countries. The total number of monitoring schemes in a country and its per capita gross domestic product were strongly, positively correlated. Schemes that were active in 2018 had been running for an average of 21 years in high-income countries, compared with 13 years in middle-income countries and 10 years in low-income countries. In high-income countries, over one-half of monitoring schemes received government funding, but this was less than one-quarter in low-income countries. Data collection was undertaken partly or wholly by volunteers in 37% of schemes, and such schemes covered significantly more sites and species than those undertaken by professionals alone. Birds were by far the most widely monitored taxonomic group, accounting for around half of all schemes, but this bias declined over time. Monitoring in most taxonomic groups remains sparse and uncoordinated, and most of the data generated are elusive and unlikely to feed into wider biodiversity conservation processes. These shortcomings could be addressed by, for example, creating an open global meta-database of biodiversity monitoring schemes and enhancing capacity for species monitoring in countries with high biodiversity. Article impact statement: Species population monitoring for conservation purposes remains strongly biased toward a few vertebrate taxa in wealthier countries.


Una Revisión Global Cuantitativa del Monitoreo Poblacional de Especies Resumen El monitoreo de especies, definido aquí como la recolección sistemática y repetida de datos para detectar cambios a largo plazo en las poblaciones de las especies silvestres, es un componente vital de la práctica y las políticas de la conservación. Generamos una base de datos de casi 1,200 esquemas, con un rango de fecha de inicio desde 1800 hasta 2018, para revisar los patrones espaciales, temporales, taxonómicos y metodológicos en el monitoreo global de especies. Identificamos los esquemas de monitoreo por medio de búsquedas estandarizadas en línea, una encuesta digital realizada a los actores, búsquedas a profundidad en una muestra de países y en una revisión global de las bases de datos sobre la biodiversidad. Estimamos el número total mundial de esquemas funcionales de monitoreo entre 3,300 y 15,000. Desde el 2000, ha habido un fuerte aumento en el número de esquemas nuevos que han iniciado en países de bajo o mediano ingreso y en países megadiversos, pero una disminución en los países de alto ingreso. El número total de esquemas de monitoreo en un país y su producto interno bruto per cápita tuvieron una correlación sólida y positiva. Los esquemas que estaban activos en 2018 lo habían estado en un promedio de 21 años en los países de alto ingreso, comparado con un promedio de 13 años en los países de mediano ingreso y de 10 años en los países de bajo ingreso. En los países de alto ingreso, más de la mitad de los esquemas de monitoreo recibieron financiamiento del gobierno, comparado con menos de un cuarto de los esquemas en los países de bajo ingreso. La recolección de datos se realizó parcial o totalmente por voluntarios en 37% de los esquemas, y dichos esquemas cubrieron significativamente más sitios y especies que aquellos realizados sólo por profesionales. Las aves fueron por mucho el grupo taxonómico más monitoreado, comprendiendo casi la mitad de todos los esquemas, pero este sesgo declinó con el tiempo. El monitoreo en la mayoría de los grupos taxonómicos todavía es disperso y descoordinado, y la mayoría de los datos generados son vagos y tienen poca probabilidad de alimentar procesos más amplios de conservación de biodiversidad. Estas deficiencias podrían abordarse, por ejemplo, creando una meta-base de datos globales abiertos de los esquemas de monitoreo de la biodiversidad y mejorando la capacidad para el monitoreo de especies en los países con alta biodiversidad.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Birds , Data Collection , Humans , Volunteers
16.
Conserv Biol ; 36(1): e13781, 2022 02.
Article in English | MEDLINE | ID: mdl-34057250

ABSTRACT

The COVID-19 pandemic has had an enormous impact on almost all aspects of human society and endeavor; the natural world and its conservation have not been spared. Through a process of expert consultation, we identified and categorized, into 19 themes and 70 subthemes, the ways in which biodiversity and its conservation have been or could be affected by the pandemic globally. Nearly 60% of the effects have been broadly negative. Subsequently, we created a compendium of all themes and subthemes, each with explanatory text, and in August 2020 a diverse group of experienced conservationists with expertise from across sectors and geographies assessed each subtheme for its likely impact on biodiversity conservation globally. The 9 subthemes ranked highest all have a negative impact. These were, in rank order, governments sidelining the environment during their economic recovery, reduced wildlife-based tourism income, increased habitat destruction, reduced government funding, increased plastic and other solid waste pollution, weakening of nature-friendly regulations and their enforcement, increased illegal harvest of wild animals, reduced philanthropy, and threats to survival of conservation organizations. In combination, these impacts present a worrying future of increased threats to biodiversity conservation but reduced capacity to counter them. The highest ranking positive impact, at 10, was the beneficial impact of wildlife-trade restrictions. More optimistically, among impacts ranked 11-20, 6 were positive and 4 were negative. We hope our assessment will draw attention to the impacts of the pandemic and, thus, improve the conservation community's ability to respond to such threats in the future.


La pandemia de COVID-19 ha tenido un impacto enorme sobre casi todos los aspectos de la sociedad humana y sus proyectos; el mundo natural y su conservación no han sido la excepción. Por medio de un proceso de consultas a expertos, identificamos y categorizamos en 19 temas y 70 subtemas las maneras en las que la biodiversidad y su conservación han sido o podrían ser afectadas mundialmente por la pandemia. Casi el 60% de los efectos han sido claramente negativos. Posteriormente, creamos un compendio de todos los temas y subtemas, cada uno con textos explicativos, para que en agosto de 2020 un grupo diverso de conservacionistas experimentados con conocimiento de todos los sectores y geografías evaluara cada subtema de acuerdo con su probabilidad de impactar sobre la conservación de la biodiversidad en todo el mundo. Los nueve subtemas con la clasificación más alta tienen un impacto negativo. Estos temas son, en orden de clasificación: los gobiernos dejando de lado al ambiente durante su recuperación económica, reducción de los ingresos basados en el turismo de fauna, incremento en la destrucción de hábitat, financiamiento reducido del gobierno, aumento de la contaminación por plásticos y otros desechos sólidos, debilitamiento de las regulaciones en pro de la naturaleza y su aplicación, incremento en la captura ilegal de animales, disminución de la filantropía y amenazas para la supervivencia de las organizaciones de conservación. La combinación de estos impactos representa un futuro preocupante lleno de amenazas para la conservación de la biodiversidad y una capacidad reducida para contrarrestarlas. El impacto positivo con la clasificación más alta, el 10, fue el impacto benéfico de las restricciones en el mercado de fauna. De manera más optimista, entre los impactos clasificados de los lugares del 11 al 20, seis fueron positivos y cuatro fueron negativos. Esperamos que nuestra evaluación enfoque la atención hacia los impactos de la pandemia y así mejore la habilidad de la comunidad conservacionista para responder a tales amenazas en el futuro. Importancia Relativa de los Impactos de la Pandemia de COVID-19 sobre la Conservación Mundial de la Biodiversidad.


Subject(s)
COVID-19 , Pandemics , Animals , Biodiversity , COVID-19/epidemiology , Conservation of Natural Resources , Humans , SARS-CoV-2
17.
Trends Ecol Evol ; 37(1): 95-104, 2022 01.
Article in English | MEDLINE | ID: mdl-34809998

ABSTRACT

We present the results of our 13th annual horizon scan of issues likely to impact on biodiversity conservation. Issues are either novel within the biological conservation sector or could cause a substantial step-change in impact, either globally or regionally. Our global panel of 26 scientists and practitioners identified 15 issues that we believe to represent the highest priorities for tracking and action. Many of the issues we identified, including the impact of satellite megaconstellations and the use of long-distance wireless energy transfer, have both elements of threats and emerging opportunities. A recent state-sponsored application to commence deep-sea mining represents a significant step-change in impact. We hope that this horizon scan will increase research and policy attention on the highlighted issues.


Subject(s)
Biodiversity , Conservation of Natural Resources , Global Health/trends , Animals , Policy
18.
Ecol Evol ; 11(23): 16634-16646, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938462

ABSTRACT

Species reliant on both the terrestrial and marine realms present a challenge for conventional species distribution models (SDMs). For such species, standard single-realm SDMs may omit key information that could result in decreased model accuracy and performance. Existing approaches to habitat suitability modeling typically do not effectively combine information from multiple realms; this methodological gap can ultimately hamper management efforts for groups such as seabirds, seals, and turtles. This study, for the first time, jointly incorporates both terrestrial information and marine information into a single species distribution model framework. We do this by sampling nearby marine conditions for a given terrestrial point and vice versa using parameters set by each species' mean maximum foraging distance and then use standard SDM methods to generate habitat suitability predictions; therefore, our method does not rely on post hoc combination of several different models. Using three seabird species with very different ecologies, we investigate whether this new multi-realm approach can improve our ability to identify suitable habitats for these species. Results show that incorporating terrestrial information into marine SDMs, or vice versa, generally improves model performance, sometimes drastically. However, there is considerable variability between species in the level of improvement as well as in the particular method that produces the most improvement. Our approach provides a repeatable and transparent method to combine information from multiple ecological realms in a single SDM framework. Important advantages over existing solutions include the opportunity to, firstly, easily combine terrestrial and marine information for species that forage large distances inland or out to sea and, secondly, consider interactions between terrestrial and marine variables.

19.
PeerJ ; 9: e12245, 2021.
Article in English | MEDLINE | ID: mdl-34721971

ABSTRACT

Evidence-based decision-making is most effective with comprehensive access to scientific studies. If studies face significant publication delays or barriers, the useful information they contain may not reach decision-makers in a timely manner. This represents a potential problem for mission-oriented disciplines where access to the latest data is required to ensure effective actions are undertaken. We sought to analyse the severity of publication delay in conservation science-a field that requires urgent action to prevent the loss of biodiversity. We used the Conservation Evidence database to assess the length of publication delay (time from finishing data collection to publication) in the literature that tests the effectiveness of conservation interventions. From 7,447 peer-reviewed and non-peer-reviewed studies of conservation interventions published over eleven decades, we find that the raw mean publication delay was 3.2 years (±2SD = 0.1) and varied by conservation subject. A significantly shorter delay was observed for studies focused on Bee Conservation, Sustainable Aquaculture, Management of Captive Animals, Amphibian Conservation, and Control of Freshwater Invasive Species (Estimated Marginal Mean range from 1.4-1.9 years). Publication delay was significantly shorter for the non-peer-reviewed literature (Estimated Marginal Mean delay of 1.9 years ± 0.2) compared to the peer-reviewed literature (i.e., scientific journals; Estimated Marginal Mean delay of 3.0 years ± 0.1). We found publication delay has significantly increased over time (an increase of ~1.2 years from 1912 (1.4 years ± 0.2) to 2020 (2.6 years ± 0.1)), but this change was much weaker and non-significant post-2000s; we found no evidence for any decline. There was also no evidence that studies on more threatened species were subject to a shorter delay-indeed, the contrary was true for mammals, and to a lesser extent for birds. We suggest a range of possible ways in which scientists, funders, publishers, and practitioners can work together to reduce delays at each stage of the publication process.

20.
Ecol Evol ; 11(21): 14344-14350, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765110

ABSTRACT

Author-level metrics are a widely used measure of scientific success. The h-index and its variants measure publication output (number of publications) and research impact (number of citations). They are often used to influence decisions, such as allocating funding or jobs. Here, we argue that the emphasis on publication output and impact hinders scientific progress in the fields of ecology and evolution because it disincentivizes two fundamental practices: generating impactful (and therefore often long-term) datasets and sharing data. We describe a new author-level metric, the data-index, which values both dataset output (number of datasets) and impact (number of data-index citations), so promotes generating and sharing data as a result. We discuss how it could be implemented and provide user guidelines. The data-index is designed to complement other metrics of scientific success, as scientific contributions are diverse and our value system should reflect that both for the benefit of scientific progress and to create a value system that is more equitable, diverse, and inclusive. Future work should focus on promoting other scientific contributions, such as communicating science, informing policy, mentoring other scientists, and providing open-access code and tools.

SELECTION OF CITATIONS
SEARCH DETAIL
...