Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
J Plankton Res ; 45(4): 677-692, 2023.
Article in English | MEDLINE | ID: mdl-37483906

ABSTRACT

Mesoscale oceanographic features influence the composition of zooplankton. Cyclonic eddies can promote upwelling and production of gelatinous zooplankton, which play critical roles in ocean biogeochemical cycling. We examined variation in assemblages of thaliaceans (salps, doliolids and pyrosomes) among mesoscale oceanographic features at the tropical-temperate boundary of the East Australian Current (EAC) in Spring 2019 and Autumn 2021. The influence of cyclonic eddies was examined in a large offshore cyclonic eddy in 2019 and a newly formed frontal eddy in 2021. Pyrosomes were most abundant in the offshore EAC jet, and salps and doliolids were most abundant in coastal features, including within eddies that were transported offshore. In 2019, Salpa fusiformis increased 4-fold over 8 days in the large cyclonic eddy, and in 2021, doliolids increased > 50-fold over 2 weeks in a chlorophyll-rich coastal eddy while abundances of other thaliaceans remained unchanged or decreased. Correlations between abundances of thaliaceans and chlorophyll-a concentrations across the 102 samples collected during both voyages revealed that doliolids occupy a wider range of chlorophyll-a concentrations than salps. Our observations indicate that doliolids thrive in productive shelf environments, salps occur in less productive shelf waters and pyrosomes are most abundant in oligotrophic waters of the south Coral Sea.

3.
Mov Ecol ; 11(1): 21, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069648

ABSTRACT

BACKGROUND: Effective fisheries management of mobile species relies on robust knowledge of animal behaviour and habitat-use. Indices of behaviour can be useful for interpreting catch-per-unit-effort data which acts as a proxy for relative abundance. Information about habitat-use can inform stocking release strategies or the design of marine protected areas. The Giant Mud Crab (Scylla serrata; Family: Portunidae) is a swimming estuarine crab that supports significant fisheries harvest throughout the Indo-West Pacific, but little is known about the fine-scale movement and behaviour of this species. METHODS: We tagged 18 adult Giant Mud Crab with accelerometer-equipped acoustic tags to track their fine-scale movement using a hyperbolic positioning system, alongside high temporal resolution environmental data (e.g., water temperature), in a temperate south-east Australian estuary. A hidden Markov model was used to classify movement (i.e., step length, turning angle) and acceleration data into discrete behaviours, while also considering the possibility of individual variation in behavioural dynamics. We then investigated the influence of environmental covariates on these behaviours based on previously published observations. RESULTS: We fitted a model with two well-distinguished behavioural states describing periods of inactivity and foraging, and found no evidence of individual variation in behavioural dynamics. Inactive periods were most common (79% of time), and foraging was most likely during low, incoming tides; while inactivity was more likely as the high tide receded. Model selection removed time (hour) of day and water temperature (°C) as covariates, suggesting that they do not influence Giant Mud Crab behavioural dynamics at the temporal scale investigated. CONCLUSIONS: Our study is the first to quantitatively link fine-scale movement and behaviour of Giant Mud Crab to environmental variation. Our results suggest Giant Mud Crab are a predominantly sessile species, and support their status as an opportunistic scavenger. We demonstrate a relationship between the tidal cycle and foraging that is likely to minimize predation risk while maximizing energetic efficiency. These results may explain why tidal covariates influence catch rates in swimming crabs, and provide a foundation for standardisation and interpretation of catch-per-unit-effort data-a commonly used metric in fisheries science.

4.
Sci Total Environ ; 878: 163015, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-36965737

ABSTRACT

Thousands of oil and gas structures have been installed in the world's oceans over the past 70 years to meet the population's reliance on hydrocarbons. Over the last decade, there has been increased concern over how to handle decommissioning of this infrastructure when it reaches the end of its operational life. Complete or partial removal may or may not present the best option when considering potential impacts on the environment, society, technical feasibility, economy, and future asset liability. Re-purposing of offshore structures may also be a valid legal option under international maritime law where robust evidence exists to support this option. Given the complex nature of decommissioning offshore infrastructure, a global horizon scan was undertaken, eliciting input from an interdisciplinary cohort of 35 global experts to develop the top ten priority research needs to further inform decommissioning decisions and advance our understanding of their potential impacts. The highest research priorities included: (1) an assessment of impacts of contaminants and their acceptable environmental limits to reduce potential for ecological harm; (2) defining risk and acceptability thresholds in policy/governance; (3) characterising liability issues of ongoing costs and responsibility; and (4) quantification of impacts to ecosystem services. The remaining top ten priorities included: (5) quantifying ecological connectivity; (6) assessing marine life productivity; (7) determining feasibility of infrastructure re-use; (8) identification of stakeholder views and values; (9) quantification of greenhouse gas emissions; and (10) developing a transdisciplinary decommissioning decision-making process. Addressing these priorities will help inform policy development and governance frameworks to provide industry and stakeholders with a clearer path forward for offshore decommissioning. The principles and framework developed in this paper are equally applicable for informing responsible decommissioning of offshore renewable energy infrastructure, in particular wind turbines, a field that is accelerating rapidly.

5.
Nature ; 610(7932): 513-518, 2022 10.
Article in English | MEDLINE | ID: mdl-36224387

ABSTRACT

As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Policy , Biodiversity , Biota , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Environmental Policy/legislation & jurisprudence , Environmental Policy/trends , Goals , United Nations , Animals
6.
Sci Data ; 9(1): 423, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853904

ABSTRACT

Knowing the distribution of fish larvae can inform fisheries science and resource management in several ways, by: 1) providing information on spawning areas; 2) identifying key areas to manage and conserve; and 3) helping to understand how fish populations are affected by anthropogenic pressures, such as overfishing and climate change. With the expansion of industrial fishing activity after 1945, there was increased sampling of fish larvae to help better understand variation in fish stocks. However, large-scale larval records are rare and often unavailable. Here we digitize data from Nishikawa et al. (1985), which were collected from 1956-1981 and are near-global (50°N-50°S), seasonal distribution maps of fish larvae of 18 mainly commercial pelagic taxa of the families Scombridae, Xiphiidae, Istiophoridae, Scombrolabracidae, and Scomberesocidae. Data were collected from the Pacific, Atlantic, and Indian Oceans. We present four seasonal 1° × 1° resolution maps per taxa representing larval abundance per grid cell and highlight some of the main patterns. Data are made available as delimited text, raster, and vector files.


Subject(s)
Fisheries , Tuna , Animals , Climate Change , Conservation of Natural Resources , Fishes , Larva
7.
Sci Data ; 7(1): 297, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901022

ABSTRACT

Zooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0-60°S, 110-160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present. Data have been standardised and all available metadata included. We have lodged this dataset with the Australian Ocean Data Network, allowing full public access. The Australian Zooplankton Biomass Database will be valuable for global change studies, research assessing trophic linkages, and for initialising and assessing biogeochemical and ecosystem models of lower trophic levels.


Subject(s)
Biomass , Zooplankton , Animals , Australia , Indian Ocean , Pacific Ocean
8.
J Anim Ecol ; 89(11): 2692-2703, 2020 11.
Article in English | MEDLINE | ID: mdl-32895913

ABSTRACT

Individual body size strongly influences the trophic role of marine organisms and the structure and function of marine ecosystems. Quantifying trophic position-individual body size relationships (trophic allometries) underpins the development of size-structured ecosystem models to predict abundance and the transfer of energy through ecosystems. Trophic allometries are well studied for fishes but remain relatively unexplored for cephalopods. Cephalopods are important components of coastal, oceanic and deep-sea ecosystems, and they play a key role in the transfer of biomass from low trophic positions to higher predators. It is therefore important to resolve cephalopod trophic allometries to accurately represent them within size-structured ecosystem models. We assessed the trophic positions of cephalopods in an oceanic pelagic (0-500 m) community (sampled by trawling in a cold-core eddy in the western Tasman Sea), comprising 22 species from 12 families, using bulk tissue stable isotope analysis and amino acid compound-specific stable isotope analysis. We assessed whether ontogenetic trophic position shifts were evident at the species-level and tested for the best predictor of community-level trophic allometry among body size, taxonomy and functional grouping (informed by fin and mantle morphology). Individuals in this cephalopod community spanned two trophic positions and fell into three functional groups on an activity level gradient: low, medium and high. The relationship between trophic position and ontogeny varied among species, with the most marked differences evident between species from different functional groups. Activity-level-based functional group and individual body size are best explained by cephalopod trophic positions (marginal R2  = 0.43). Our results suggest that the morphological traits used to infer activity level, such as fin-to-mantle length ratio, fin musculature and mantle musculature are strong predictors of cephalopod trophic allometries. Contrary to established theory, not all cephalopods are voracious predators. Low activity level cephalopods have a distinct feeding mode, with low trophic positions and little-to-no ontogenetic increases. Given the important role of cephalopods in marine ecosystems, distinct feeding modes could have important consequences for energy pathways and ecosystem structure and function. These findings will facilitate trait-based and other model estimates of cephalopod abundance in the changing global ocean.


Subject(s)
Cephalopoda , Ecosystem , Animals , Aquatic Organisms , Food Chain , Nutritional Status , Oceans and Seas
9.
Mar Environ Res ; 147: 72-79, 2019 May.
Article in English | MEDLINE | ID: mdl-31000357

ABSTRACT

Pomatomus saltatrix is an important recreational fishing species with seven major populations worldwide. The reproductive biology of the southwest Pacific Ocean (east Australian) population is uncertain, with both an extended spawning and multiple spawning periods previously hypothesised. Here we demonstrate an altered sex ratio biased towards females and a larger length at 50% maturity (L50) compared to those recorded for the population 40 years ago, before comprehensive management strategies were implemented. We also report a second, previously undescribed, late-summer spawning event which was identified by analysing patterns in a gonadosomatic index across the whole population and an historical larval fish database. P. saltatrix are capable of spawning multiple times per season with estimates of batch fecundity ranging from 99,488 to 1,424,425 eggs per fish. When combined with the length frequency distribution of the population, the majority of eggs (64%) were shown to be produced by fish ≤40 cm fork length (FL). L50 was estimated at 30.2 and 31.5 cm FL for male and female P. saltatrix respectively, 4 cm larger than 40 years ago. The sex ratio of the population was found to have significantly shifted over the last 40 years from an equal sex ratio to a female dominated population (1.58 females:1 male). These dramatic alterations to the sex ratio and L50 highlights the value of monitoring the reproductive biology of exploited fish populations to ensure that management plans remain appropriate.


Subject(s)
Perciformes , Sex Ratio , Animals , Australia , Female , Fisheries , Male , Pacific Ocean , Reproduction
10.
Sci Data ; 5: 180207, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30325350

ABSTRACT

Larval fishes are a useful metric of marine ecosystem state and change, as well as species-specific patterns in phenology. The high level of taxonomic expertise required to identify larval fishes to species level, and the considerable effort required to collect samples, make these data very valuable. Here we collate 3178 samples of larval fish assemblages, from 12 research projects from 1983-present, from temperate and subtropical Australian pelagic waters. This forms a benchmark for the larval fish assemblage for the region, and includes recent monitoring of larval fishes at coastal oceanographic reference stations. Comparing larval fishes among projects can be problematic due to differences in taxonomic resolution, and identifying all taxa to species is challenging, so this study reports a standard taxonomic resolution (of 218 taxa) for this region to help guide future research. This larval fish database serves as a data repository for surveys of larval fish assemblages in the region, and can contribute to analysis of climate-driven changes in the location and timing of the spawning of marine fishes.


Subject(s)
Fishes , Zooplankton , Animals , Australia , Databases, Factual , Ecosystem , Larva , Species Specificity
11.
Sci Rep ; 8(1): 10725, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30013084

ABSTRACT

Consumption rates are the foundation of trophic ecology, yet bioenergetics models used to estimate these rates can lack realism by not incorporating the ontogeny of diet. We constructed a bioenergetics model of a marine predatory fish (tailor, Pomatomus saltatrix) that incorporated high-resolution ontogenetic diet variation, and compared consumption estimates to those derived from typical bioenergetics models that do not consider ontogenetic diet variation. We found tailor consumption was over- or under-estimated by ~5-25% when only including the most common prey item. This error was due to a positive relationship between mean prey energy density and predator body size. Since high-resolution diet data isn't always available, we also simulated how increasing dietary information progressively influenced consumption rate estimates. The greatest improvement in consumption rate estimates occurred when diet variation of 2-3 stanzas (1-2 juvenile stanzas, and adults) was included, with at least 5-6 most common prey types per stanza. We recommend increased emphasis on incorporating the ontogeny of diet and prey energy density in consumption rate estimates, especially for species with spatially segregated life stages or variable diets. A small-moderate increase in the resolution of dietary information can greatly benefit the accuracy of estimated consumption rates. We present a method of incorporating variable prey energy density into bioenergetics models.


Subject(s)
Energy Metabolism/physiology , Food Chain , Models, Biological , Perciformes/physiology , Predatory Behavior/physiology , Animals , Body Size/physiology
12.
Sci Data ; 5: 180018, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29461516

ABSTRACT

Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.


Subject(s)
Chlorophyll , Australia , Databases, Factual , Ecosystem , Phytoplankton , Seawater
13.
Biofouling ; 32(9): 1049-60, 2016 10.
Article in English | MEDLINE | ID: mdl-27626597

ABSTRACT

Artificial reefs provide shelter and can be an important source of food for fish depending on the epibenthic community on the structure. The growth and diversity of this community is influenced by the substratum material and the surface orientation of the reef. Settlement plates of four materials (Perspex, sandstone, wood and steel) were deployed in three orientations (upwards, downwards and vertical) at a depth of 33 m on a designed artificial reef (DAR) off the coast of Sydney, Australia. After three months, the steel surfaces had lower invertebrate species richness, total abundance and diversity compared to other surfaces. Steel was not an ideal material for the initial recruitment and growth of epibenthic invertebrates. A longer duration would be required to develop a mature epibenthic community. Surface orientation had species-specific impacts. Surface material and orientation are important factors for developing epibenthic assemblages, and are thus likely to affect the broader artificial reef assemblage, including fish.


Subject(s)
Aquatic Organisms/growth & development , Construction Materials , Coral Reefs , Animals , Australia , Fishes/growth & development , Invertebrates/growth & development , Polymethyl Methacrylate/chemistry , Species Specificity , Steel/chemistry , Surface Properties , Wood/chemistry
14.
Trends Ecol Evol ; 31(9): 720-733, 2016 09.
Article in English | MEDLINE | ID: mdl-27444105

ABSTRACT

Salps are barrel-shaped, gelatinous zooplankton that regularly form large swarms. They have historically been ignored because they are difficult to sample and their gelatinous body structure suggests that they are unimportant in food webs and biogeochemical cycles. We collate evidence to overturn several common misconceptions about salps that have hampered research. We show that salps play a major role in carbon sequestration and are key components of marine food webs as a food source for at least 202 species including fish, turtles, and crustaceans. The future of salps in the Anthropocene is uncertain, and therefore further research into areas such as basic rate processes and their biogeochemical impact through new and innovative laboratory and field methods is needed.


Subject(s)
Food Chain , Zooplankton , Animals , Fishes , Oceans and Seas
15.
Ecol Evol ; 6(8): 2262-74, 2016 04.
Article in English | MEDLINE | ID: mdl-27069576

ABSTRACT

Consumption is the basis of metabolic and trophic ecology and is used to assess an animal's trophic impact. The contribution of activity to an animal's energy budget is an important parameter when estimating consumption, yet activity is usually measured in captive animals. Developments in telemetry have allowed the energetic costs of activity to be measured for wild animals; however, wild activity is seldom incorporated into estimates of consumption rates. We calculated the consumption rate of a free-ranging marine predator (yellowtail kingfish, Seriola lalandi) by integrating the energetic cost of free-ranging activity into a bioenergetics model. Accelerometry transmitters were used in conjunction with laboratory respirometry trials to estimate kingfish active metabolic rate in the wild. These field-derived consumption rate estimates were compared with those estimated by two traditional bioenergetics methods. The first method derived routine swimming speed from fish morphology as an index of activity (a "morphometric" method), and the second considered activity as a fixed proportion of standard metabolic rate (a "physiological" method). The mean consumption rate for free-ranging kingfish measured by accelerometry was 152 J·g(-1)·day(-1), which lay between the estimates from the morphometric method (µ = 134 J·g(-1)·day(-1)) and the physiological method (µ = 181 J·g(-1)·day(-1)). Incorporating field-derived activity values resulted in the smallest variance in log-normally distributed consumption rates (σ = 0.31), compared with the morphometric (σ = 0.57) and physiological (σ = 0.78) methods. Incorporating field-derived activity into bioenergetics models probably provided more realistic estimates of consumption rate compared with the traditional methods, which may further our understanding of trophic interactions that underpin ecosystem-based fisheries management. The general methods used to estimate active metabolic rates of free-ranging fish could be extended to examine ecological energetics and trophic interactions across aquatic and terrestrial ecosystems.

16.
Ecol Evol ; 5(20): 4590-602, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26668725

ABSTRACT

The debate on whether artificial reefs produce new fish or simply attract existing fish biomass continues due to the difficulty in distinguishing these processes, and there remains considerable doubt as to whether artificial reefs are a harmful form of habitat modification. The harm typically associated with attraction is that fish will be easier to harvest due to the existing biomass aggregating at a newly deployed reef. This outcome of fish attraction has not progressed past an anecdotal form, however, and is always perceived as a harmful process. We present a numerical model that simulates the effect that a redistributed fish biomass, due to an artificial reef, has on fishing catch per unit effort (CPUE). This model can be used to identify the scenarios (in terms of reef, fish, and harvest characteristics) that pose the most risk of exploitation due to fish attraction. The properties of this model were compared to the long-standing predictions by Bohnsack (1989) on the factors that increase the risk or the harm of attraction. Simulations revealed that attraction is not always harmful because it does not always increase maximum fish density. Rather, attraction sometimes disperses existing fish biomass making them harder to catch. Some attraction can be ideal, with CPUE lowest when attraction leads to an equal distribution of biomass between natural and artificial reefs. Simulations also showed that the outcomes from attraction depend on the characteristics of the target fish species, such that transient or pelagic species are often at more risk of harmful attraction than resident species. Our findings generally agree with Bohnsack's predictions, although we recommend distinguishing "mobility" and "fidelity" when identifying species most at risk from attraction, as these traits had great influence on patterns of harvest of attracted fish biomass.

17.
J Exp Biol ; 217(Pt 17): 3033-7, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24948630

ABSTRACT

Theoretical and laboratory studies generally show that ectotherm performance increases with temperature to an optimum, and subsequently declines. Several physiological mechanisms probably shape thermal performance curves, but responses of free-ranging animals to temperature variation will represent a compromise between these mechanisms and ecological constraints. Thermal performance data from wild animals balancing physiology and ecology are rare, and this represents a hindrance for predicting population impacts of future temperature change. We used internally implanted accelerometers near the middle of a species' geographical distribution and gill-net catch data near the species' latitudinal extremes to quantify temperature-related activity levels of a wild predatory fish (Platycephalus fuscus). We examined our data in the context of established models of thermal performance, and the relationship between thermal performance thresholds and biogeography. Acceleration data approximated a thermal performance curve, with activity peaking at 23°C but declining rapidly at higher temperatures. Gill-net catch data displayed a similar trend, with a temperature-associated increase and decrease in catch rates in temperate and tropical regions, respectively. Extrapolated estimates of zero activity (CTmin and CTmax) from the accelerometers were similar to the minimum and maximum mean monthly water temperatures experienced at the southern and northern (respectively) limits of the species distribution, consistent with performance-limited biogeography in this species. These data highlight the fundamental influence of temperature on ectotherm performance, and how thermal performance limits may shape biogeography. Biologging approaches are rarely used to examine thermal performance curves in free-ranging animals, but these may be central to understanding the trade-offs between physiology and ecology that constrain species' biogeographies and determine the susceptibility of ectotherms to future increases in temperature.


Subject(s)
Acclimatization/physiology , Animal Distribution , Fishes/physiology , Movement/physiology , Temperature , Accelerometry , Animals
18.
PLoS One ; 8(6): e63505, 2014.
Article in English | MEDLINE | ID: mdl-23755106

ABSTRACT

If the primary goal of artificial reef construction is the creation of additional reef habitat that is comparable to adjacent natural rocky-reef, then performance should be evaluated using simultaneous comparisons with adjacent natural habitats. Using baited remote underwater video (BRUV) fish assemblages on purpose-built estuarine artificial reefs and adjacent natural rocky-reef and sand-flat were assessed 18 months post-deployment in three south-east Australian estuaries. Fish abundance, species richness and diversity were found to be greater on the artificial reefs than on either naturally occurring reef or sand-flat in all estuaries. Comparisons within each estuary identified significant differences in the species composition between the artificial and natural rocky-reefs. The artificial reef assemblage was dominated by sparid species including Acanthopagrus australis and Rhabdosargus sarba. The preference for a range of habitats by theses sparid species is evident by their detection on sand-flat, natural rocky reef and artificial reef habitats. The fish assemblage identified on the artificial reefs remained distinct from the adjacent rocky-reef, comprising a range of species drawn from naturally occurring rocky-reef and sand-flat. In addition, some mid-water schooling species including Trachurus novaezelandiae and Pseudocaranx georgianus were only identified on the artificial reef community; presumably as result of the reef's isolated location in open-water. We concluded that estuarine artificial reef assemblages are likely to differ significantly from adjacent rocky-reef, potentially as a result of physical factors such as reef isolation, coupled with species specific behavioural traits such as the ability of some species to traverse large sand flats in order to locate reef structure, and feeding preferences. Artificial reefs should not be viewed as direct surrogates for natural reef. The assemblages are likely to remain distinct from naturally occurring habitat comprised of species that reside on a range of adjacent natural habitats.


Subject(s)
Coral Reefs , Estuaries , Fishes/physiology , Animals , Australia , Geography , Multivariate Analysis , Principal Component Analysis , Species Specificity
19.
Am Nat ; 181(3): 331-43, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23448883

ABSTRACT

In resource-limited populations, an increase in average body size can occur only with a decline in abundance. This is known as self-thinning, and the decline in abundance in food-limited populations is considered proportional to the scaling of metabolism with body mass. This popular hypothesis may be inaccurate, because self-thinning populations can also experience density-dependent competition, which could alter their energy use beyond the predictions of metabolic scaling. This study tested whether density-dependent competition has an energetic role in self-thinning, by manipulating the abundance of the fish Macquaria novemaculeata and tank size to partition the effects of competition from metabolic scaling. We found that self-thinning can be density dependent and that changes in intraspecific competition may be more influential than metabolic scaling on self-thinning relationships. The energetic mechanism we propose is that density-dependent competition causes variation in the allocation of energy to growth, which alters the energetic efficiency of self-thinning cohorts. The implication is that food-limited cohorts and populations with competitive strategies that encourage fast-growing individuals will have less body mass at equilibrium and higher mortality rates. This finding sheds light on the processes structuring populations and can be used to explain inconsistencies in the mass-abundance scaling of assemblages and communities (the energetic-equivalence rule).


Subject(s)
Body Size/physiology , Competitive Behavior/physiology , Energy Metabolism/physiology , Models, Biological , Perciformes/growth & development , Analysis of Variance , Animals , Population Density , Population Dynamics
20.
Proc Biol Sci ; 280(1750): 20122363, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23173211

ABSTRACT

Activity rhythms are ubiquitous in nature, and generally synchronized with the day-night cycle. Several taxa have been shown to switch between nocturnal and diurnal activity in response to environmental variability, and these relatively uncommon switches provide a basis for greater understanding of the mechanisms and adaptive significance of circadian (approx. 24 h) rhythms. Plasticity of activity rhythms has been identified in association with a variety of factors, from changes in predation pressure to an altered nutritional or social status. Here, we report a switch in activity rhythm that is associated with rainfall. Outside periods of rain, the estuarine-associated teleost Acanthopagrus australis was most active and in shallower depths during the day, but this activity and depth pattern was reversed in the days following rain, with diurnality restored as estuarine conductivity and turbidity levels returned to pre-rain levels. Although representing the first example of a rain-induced reversal of activity rhythm in an aquatic animal of which we are aware, our results are consistent with established models on the trade-offs between predation risk and foraging efficiency.


Subject(s)
Circadian Rhythm , Motor Activity , Perciformes/physiology , Accelerometry , Animals , New South Wales , Photoperiod , Rain
SELECTION OF CITATIONS
SEARCH DETAIL
...