Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Main subject
Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674948

ABSTRACT

Polylactic-acid-starch-based polymer composite (PLA/TPS) has good thermal stability for biocomposites. However, the physical and mechanical properties of PLA/TPS do not meet the standards. It needed additives to enhance its physical and mechanical properties. The aim was to improve the physical and mechanical properties of PLA/thermoplastic starch using sucrose. In addition, this study evaluated the enhancement of thermal properties of PLA/thermoplastic starch using sucrose. This study used sucrose as an additive to enhance the PLA/TPS composite. The addition of sucrose inhibits the degradation of biocomposites. This means that thermal stability increases. The thermal stability increased because the degree of crystallinity increased with the addition of sucrose, which was also proven in the XRD result. The addition of sucrose caused the morphology of the biocomposite to have pores. The FESEM results showed that biocomposites with the addition of sucrose had pores and gaps. These gaps result from low adhesion between polymers, causing a decrease in the mechanical and physical properties of the sample. Based on the FTIR spectra, biocomposite PLA/TPS blends with the addition of sucrose still have many hydroxyl groups that will lead to attracting other molecules or ions, such as oxygen or water. This phenomenon affects the physical and mechanical properties of materials. The physical and mechanical properties increased with sucrose addition. The best composite was prepared using 3% sucrose. This is because sucrose has a crystalline structure that affects the properties of biocomposites. However, the addition of 3% sucrose was not as effective as that of neat PLA.

2.
Polymers (Basel) ; 15(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37835913

ABSTRACT

The depletion of natural resources and increasing environmental apprehension regarding the reduction of harmful isocyanates employed in manufacturing polyurethanes (PUs) have generated significant attention from both industrial and academic sectors. This attention is focused on advancing bio-based non-isocyanate polyurethane (NIPU) resins as viable and sustainable substitutes, possessing satisfactory properties. This review presents a comprehensive analysis of the progress made in developing bio-based NIPU polymers for wood adhesive applications. The main aim of this paper is to conduct a comprehensive analysis of the latest advancements in the production of high-performance bio-based NIPU resins derived from lignin and tannin for wood composites. A comprehensive evaluation was conducted on scholarly publications retrieved from the Scopus database, encompassing the period from January 2010 to April 2023. In NIPU adhesive manufacturing, the exploration of substitute materials for isocyanates is imperative, due to their inherent toxicity, high cost, and limited availability. The process of demethylation and carbonation of lignin and tannin has the potential to produce polyphenolic compounds that possess hydroxyl and carbonyl functional groups. Bio-based NIPUs can be synthesized through the reaction involving diamine molecules. Previous studies have provided evidence indicating that NIPUs derived from lignin and tannin exhibit enhanced mechanical properties, decreased curing temperatures and shortened pressing durations, and are devoid of isocyanates. The characterization of NIPU adhesives based on lignin and tannin was conducted using various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF) mass spectrometry, and gel permeation chromatography (GPC). The adhesive performance of tannin-based NIPU resins was shown to be superior to that of lignin-based NIPUs. This paper elucidates the potential of lignin and tannin as alternate sources for polyols in the manufacturing of NIPUs, specifically for their application as wood adhesives.

3.
Polymers (Basel) ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835946

ABSTRACT

Emissions of formaldehyde from wood-based panels, such as plywood, are gaining increased attention due to their carcinogenic impact on human health and detrimental effects on the environment. Plywood, which is primarily bound with a urea-formaldehyde adhesive, releases formaldehyde during hot pressing and gradually over time. Therefore, this study aims to analyze the impact of non-formaldehyde adhesive types on plywood performance. In addition, plywood performance was assessed by comparing Jabon wood (Anthocephalus cadamba Miq) veneer with other Indonesian wood veneers such as Mempisang (Alphonse spp.) and Mahogany (Swietenia mahagoni). To manufacture a three-layer plywood panel, a two-step manufacturing process was devised. The first step involved the use of Jabon veneers treated with citric acid (CA), maleic acid (MA), and molasses (MO), and another step was carried out for various wood veneers such as Jabon, Mempisang, and Mahogany using CA. The performance of plywood was examined using JAS 233:2003. The performance of plywood bonded with CA was better than that of plywood bonded with MA and MO. The Jabon wood veneer resulted in a lower density of plywood than other wood veneers. The water absorption, thickness swelling, modulus of elasticity, and tensile shear strength of plywood from Jabon wood veneer were similar to those of plywood from Mahogany wood veneer and lower than those of Mempisang wood veneer. The ester linkages of plywood bonded with CA were greater than those of plywood bonded with MA and MO because plywood bonded with CA has better performance than plywood bonded with MA and MO.

4.
Polymers (Basel) ; 14(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36432995

ABSTRACT

The suitability of bamboo's basic characteristics is very important for more specific purposes, such as composite raw materials. Anatomical, physical, mechanical, and chemical characteristics are some of bamboo's fundamental characteristics. This study analyses the basic properties, such as physical, mechanical, and chemical properties of bamboo from the Forest Area with Special Purpose (FASP) Pondok Buluh Sumatera Island, Indonesia (I); analyses the relationship between the properties of each type of bamboo (II); and chooses the type of bamboo with the best properties that have the potential to be applied to composite materials, such as laminated bamboo (III). This study used materials consisting of six species of bamboo from the FASP Pondok Buluh. The manufacture of physical and mechanical test samples refers to the ISO 22157 standard, 2004, while the chemical properties test refers to the TAPPI 1999 standard. The chemical, physical, and mechanical properties of bamboo vary widely among species. The lowest holocellulose and α-cellulose content were found in the Kuning Bamboo (B. vulgaris var. vittata). The content of holocellulose and α-cellulose causes the lowest density in Kuning Bamboo (B. vulgaris var. vittata). The Dasar Bamboo (Bambusa vulgaris) has the highest levels of lignin. The substances have an impact on moisture content, T/R ratio, and shear strength. The Dasar Bamboo (Bambusa vulgaris) has the lowest moisture content, the highest T/R ratio, and the highest shear strength. However, Betung Bamboo (Dendrocalamus asper) has the highest density in this study. The compressive strength of the Betung Bamboo (Dendrocalamus asper) has the highest value. Therefore, Betung bamboo and Dasar Bamboo in this study were potentially utilized for composite materials, such as laminated bamboo.

5.
Polymers (Basel) ; 14(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36015587

ABSTRACT

The use of natural fibers or particles as alternative raw materials for particleboard production is essential due to the shrinking forest area. Currently, dung waste from the Sumatran elephant (Elephas maximus sumatranus) is being used as a raw material for particleboard due to its high fiber content. Although the product still has inferior mechanical and physical characteristics, it can be improved by layering bamboo. Therefore, this study aimed to enhance the mechanical and physical qualities of elephant dung particleboard by adding layers of bamboo. The particleboard constructed had three layers; namely, the face and back in the form of a bamboo layers, as well as the core, which was in the form of elephant dung. The elephant dung was evenly mixed with isocyanate adhesive using a spray gun, and the bamboo layers were coated with adhesive on one side of the surface. The sample was subjected to a hot press at a temperature of 150 °C and 30 kg/cm2 pressure for 10 min. Generally, JIS A 5908-2003 is the specification used to test the physical and mechanical properties of particleboard. During the experiment, the characteristics examined include density, moisture content, water absorption, thickness swelling, modulus of elasticity, modulus of rupture, and internal bonding, which were enhanced by using layers of bamboo. The results showed that the physical properties of the particleboard with bamboo layers were a density of 0.62-0.69 g/cm3, a moisture content of 7.87-10.35%, water absorption of 38.27-68.58%, and a thickness swelling of 10.87-30.00%, which met the minimum standards of JIS A 5908-2003. The mechanical characteristics had values for the modulus of elasticity of 1952-7282 MPa, the modulus of rupture of 20.44-68.27 MPa, and the internal bonding of 0.16-0.38 MPa, which met the JIS A 5908-2003 standard. Based on these results, the particleboard with Belangke bamboo layers was the best in this study.

6.
Polymers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683909

ABSTRACT

Sumatran elephants (Elephas maximus sumatranus) are the world's largest living land mammals. The elephant's digestive system can only absorb 40% of the nutrients in digested feed, and the remainder is excreted as dung. Elephant dung waste can be used as a particleboard material due to its high fiber content. The objectives of this study are: (i) to prepare elephant dung waste as raw material for particleboard, (ii) to improve elephant dung particleboard's physical and mechanical properties using wood shavings, and (iii) to study the influence of several parameters on the physical and mechanical properties of particleboard. The particleboard dimensions and density were set at 20 cm × 20 cm × 1 cm and 0.8 g/cm3, respectively. The mixture ratio of elephant dung and wood shavings was 100/0, 90/10, 80/20, 70/30, 60/40, and 50/50 (% w/w). This mixture ratio of particles was sprayed with 7% isocyanate adhesive. The pressing at a pressure of 30 kg/cm2 for 5 min and 160 °C was used in this study. The physical and mechanical properties of particleboard were tested according to JIS A 5908 (2003) standard. The result shows that the addition of wood shaving improved the elephant dung particleboard's physical and mechanical properties. Except for moisture content and water absorption, the addition of wood shavings has a significant effect on elephant dung particleboard's physical and mechanical properties. The best ratio of elephant dung and wood-shaving for this research is 50/50 and has fulfilled the JIS A 5908-2003 standard, except for thickness swelling.

7.
Polymers (Basel) ; 14(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35566927

ABSTRACT

Oil palm plantations have expanded rapidly in Southeast Asia, particularly in Indonesia and Malaysia. A lot of products, including food and other edible products, oleo-chemicals, cosmetics, personal and household care, pharmaceutical products, and biodiesels are derived from palm oil, thus making them one of the most economically important plants. After 25-30 years of age, the palms are felled and replaced due to declining oil production. Oil palm trunks (OPT) are considered significant waste products. The trunks remain on the plantation site for nutrient recycling or burning. This increases insect and fungi populations causing environmental problems for the new palm generation or air pollution due to the fire. Up till now, OPT has received less attention in research studies. Therefore, this review summarizes the utilization of OPT into products made of oil palm fibers mainly derived from OPT and its application as the substitution of wood panel products. Some research works have been carried out on oil palm fibers that are derived from OPT for exploiting their potential as raw material of composite panel products, which is the objective of this review. Areas of development are processed into various conventional composite panel products such as plywood and laminated board which are usually predominantly made of wood and bonded by synthetic resins, particleboard with binder, or binderless and cement board which is arranged with wood as a minor component. All of the products have been presented and described technically according to best knowledge of the authors and literature review.

8.
Polymers (Basel) ; 14(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160400

ABSTRACT

This study aims to produce mortar through the addition of oil palm shells (OPS)-activated charcoal and oil palm empty fruit bunch (OPEFB) hydrochar, which has high mechanical properties, self-healing crack capabilities, and pollutant adsorption abilities. The cracking of mortar and other cementitious materials is essential in anticipating and reducing building damages and ages due to various reasons, such as chemical reactions, foundation movements, climatic changes, and environmental stresses. This leads to the creation of self-healing mortar, which is produced by adding reductive crack size materials to form calcium carbonate (CaCO3) and silicate hydrate (3CaO.2SiO2.2H2O, CSH). One of these materials is known as activated charcoal, which is obtained from oil palm shells (OPS) and oil palm empty fruit bunches (OPEFB) fibres. This is because the OPS-activated charcoal minimizes crack sizes and functions as a gaseous pollutant absorber. In this study, activated charcoal was used as fine aggregate to substitute a part of the utilized sand. This indicated that the utilized content varied between 1-3 wt.% cement. Also, the mortar samples were tested after 28 days of cure, including the mechanical properties and gaseous pollutant adsorption abilities. Based on this study, the crack recovery test was also performed at specific forces and wet/dry cycles, respectively, indicating that the mortar with the addition of 3% activated charcoal showed the best characteristics. Using 3% of the cement weight, OPEFB hydrochar subsequently varied at 1, 2, and 3% of the mortar volume, respectively. Therefore, the mortar with 3 and 1% of OPS-activated charcoal and OPEFB hydrochar had the best properties, based on mechanical, self-healing, and pollutant adsorption abilities.

9.
Chemosphere ; 290: 133163, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34871617

ABSTRACT

It is very important to develop green composite materials owing to increasing global environmental issues. One of the alternative raw materials for the production of green composites is biomass. Bagasse sorghum is a promising alternative raw material for the manufacturing of particleboard composites. The influence of sorghum accessions on the performance of particleboard composites was analyzed in this study. In addition, the particleboard quality was made using maleic acid (MA) adhesive and compared with citric acid (CA) and phenol-formaldehyde (PF) adhesives. Three accessions of sorghum, 4183A, super 1, and Pahat, were used as raw materials in particleboard manufacturing. The 20 wt% MA adhesive was applied in particleboard manufacturing. The board dimensions and density targets were 30 × 30 × 0.9 cm3 and 0.8 g/cm3, respectively. The particle mat was pressed 200 °C for 10 min with a maximum of 6.5 MPa. For reference, the JIS A 5908-2003 was used to evaluate physical and mechanical properties, SNI 7207-2014 was used for the resistance against termites, and JIS K 1571-2004 for evaluated the particleboard against decay. The results showed that the sorghum accession in this research did not affect the quality of the particleboard. The thickness swelling (TS), internal bond (IB), modulus of elasticity (MOE), and modulus of rupture (MOR) of particleboard satisfied JIS A 5908-2003 type 8. The particleboard using MA was comparable with those bonded with CA and had better durability against termites and decay than PF adhesives. The ester linkages were formed due to the reaction between MA (carboxyl groups) and the sorghum bagasse (hydroxyl groups) after being analyzed using Fourier transform infrared (FTIR). Therefore, particleboard in this study has good quality.


Subject(s)
Sorghum , Adhesives , Formaldehyde , Maleates
10.
Polymers (Basel) ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36616516

ABSTRACT

This physical and mechanical properties of a table tennis blade made from sorghum bagasse particleboard (TTBSB-particleboard) bonded maleic acid adhesive was investigated under pressing temperature and time variations. The TTBSB-particleboard was produced via a two-stage process in this study. A pressing temperature of 170-200 °C was used to prepare the first stage for 10 min. Following this, the second stage of the TTBSB-particleboard was produced with a different pressing time of 5-20 min. The TTBSB-particleboard had a specified target density of 0.6 g/cm3 and a size of 30 cm × 30 cm × 0.6 cm, respectively. For references concerning the tested quality of TTBSB-particleboard, the JIS A 5908-2003 standard has been used. For comparison, the commercial blades of Yuguan Wooden 1011 and Donic Original Carbo Speed were tested under the same conditions. The quality of the TTBSB-particleboard was successfully enhanced by increasing the pressing temperature (170 to 200 °C) and time (5 to 20 min). As a result, the pressing condition of 200 °C and 20 min were effective in this study. The TTBSB-particleboard in this study has a greater weight than the commercial blades of Yuguan and Donic. However, the TTBSB-particleboard in this study had a ball rebound comparable to that of the Donic blade.

SELECTION OF CITATIONS
SEARCH DETAIL
...