Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Eng Biotechnol ; 22(2): 100381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797549

ABSTRACT

BACKGROUND: Brassica oleracea var. acephala, commonly referred to as kale, is a well-documented plant species, a food crop but well recognized for its capacity to endure and manage the accumulation of heavy metals. In this research, the phytoremediation potential of kale was evaluated based on cadmium intake, utilizing three distinct kale varieties originating from Bosnia and Herzegovina. All kales were grown in controlled conditions, with different concentrations of cadmium (Cd), a known strong pollutant found in small concentrations in soil under normal environmental conditions. After the root length analysis and cadmium atomic spectrometry, we utilized quantitative PCR (qPCR) and cycle threshold (Ct) values to calculate the expression levels of five genes associated with Cd heavy metal response: Mitogen-activated protein kinase 2 (MAPK2), Farnesylated protein 26 and 27 (HIPP26, HIPP27), Natural resistance-associated macrophage protein 6 (RAMP6), and Heavy metal accumulator 2 (HMA2). RESULTS: The atomic reader's analysis of rising cadmium concentrations revealed a proportional decline in the length of kale roots. The gene expression levels corresponded to cadmium stress differently among varieties, but mostly showing notable up-regulations under Cd stress, indicating the strong Cd presence within the plant. CONCLUSIONS: This study demonstrated differences in gene expression behavior among three B. oleracea varieties from Bosnia and Herzegovina, indicating and filtering the Cd-resistant kale, and kale varieties suitable for phytoremediation. For the first time, such a study was conducted on kale varieties from Bosnia and Herzegovina, analyzing the impact of cadmium on the growth and resilience of these species.

2.
Biomedicines ; 12(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672267

ABSTRACT

BACKGROUND: Post-acute sequelae of SARS-CoV-2 infection (PASC) is a complicated disease that affects millions of people all over the world. Previous studies have shown that PASC impacts 10% of SARS-CoV-2 infected patients of which 50-70% are hospitalised. It has also been shown that 10-12% of those vaccinated against COVID-19 were affected by PASC and its complications. The severity and the later development of PASC symptoms are positively associated with the early intensity of the infection. RESULTS: The generated health complications caused by PASC involve a vast variety of organ systems. Patients affected by PASC have been diagnosed with neuropsychiatric and neurological symptoms. The cardiovascular system also has been involved and several diseases such as myocarditis, pericarditis, and coronary artery diseases were reported. Chronic hematological problems such as thrombotic endothelialitis and hypercoagulability were described as conditions that could increase the risk of clotting disorders and coagulopathy in PASC patients. Chest pain, breathlessness, and cough in PASC patients were associated with the respiratory system in long-COVID causing respiratory distress syndrome. The observed immune complications were notable, involving several diseases. The renal system also was impacted, which resulted in raising the risk of diseases such as thrombotic issues, fibrosis, and sepsis. Endocrine gland malfunction can lead to diabetes, thyroiditis, and male infertility. Symptoms such as diarrhea, nausea, loss of appetite, and taste were also among reported observations due to several gastrointestinal disorders. Skin abnormalities might be an indication of infection and long-term implications such as persistent cutaneous complaints linked to PASC. CONCLUSIONS: Long-COVID is a multidimensional syndrome with considerable public health implications, affecting several physiological systems and demanding thorough medical therapy, and more study to address its underlying causes and long-term effects is needed.

3.
Med Glas (Zenica) ; 20(2)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36944017

ABSTRACT

Aim Examination of the effectiveness of STR loci in proving sibship of the Bosnian-Herzegovinian village of Orahovica and the formation of a "grey zone". Methods The probability of sibship was determined by calculating the likelihood ratio (LR) parameter for each of the 15 observed STR loci and for each of the pairs of relatives and non-relatives. Cumulative sibship index (CSI) was calculated for each of the pairs by multiplying the LR values of all 15 loci and obtained values are used as CSI limit for separating relatives from non-relatives. By creating a grey zone for local populations, an attempt was made to obtain a line of demarcation between siblings and non-siblings. Results An analysis of the origin of the respondents' relatives was performed, up to the level of sibship in the third generation. The results of the CSI for pairs of relatives from the village of Orahovica showed that the highest CSI value, and therefore the sibship probability was recorded among relatives from the village of Orahovica (CSI=534211727.203;SP=99.999999812%). On the contrary, incredibly low CSI value was recorded among non-relatives,ranging from CSI=0.0000001 to 0.5261434 (SP=0.000009999% to 34.475357951%). Conclusion For the threshold value CSI=1 and for CSI=3, this method determined sibship in 100% of pairs of relatives and the absence of biological sibship in 100% of pairs of non-relatives in the village of Orahovica. The STR system is proved to be a successful method in determining sibship or absence of sibship in small local populations.

4.
Viruses ; 14(10)2022 09 22.
Article in English | MEDLINE | ID: mdl-36298660

ABSTRACT

Among numerous causative agents recognized as oncogenic drivers, 13% of total cancer cases occur as a result of viral infections. The intricacy and diversity of carcinogenic processes, however, raise significant concerns about the mechanistic function of viruses in cancer. All tumor-associated viruses have been shown to encode viral oncogenes with a potential for cell transformation and the development of malignancies, including diffuse large B-cell lymphoma (DLBCL). Given the difficulties in identifying single mechanistic explanations, it is necessary to combine ideas from systems biology and viral evolution to comprehend the processes driving viral cancer. The potential for more efficient and acceptable therapies lies in targeted medicines that aim at viral proteins or trigger immune responses to either avoid infection or eliminate infected or cancerous cells. In this review, we aim to describe the role of viral infections and their mechanistic approaches in DLBCL tumorigenesis. To the best of our knowledge, this is the first review summarizing the oncogenic potential of numerous viral agents in DLBCL development.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Humans , Herpesvirus 4, Human/physiology , Lymphoma, Large B-Cell, Diffuse/complications , Lymphoma, Large B-Cell, Diffuse/pathology , Oncogenic Viruses , Carcinogenesis , Viral Proteins
5.
J Genet Eng Biotechnol ; 20(1): 78, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35608704

ABSTRACT

BACKGROUND: COVID-19 is an illness caused by severe acute respiratory syndrome coronavirus 2. Due to its rapid spread, in March 2020 the World Health Organization (WHO) declared pandemic. Since the outbreak of pandemic many governments, scientists, and institutions started to work on new vaccines and finding of new and repurposing drugs. Drug repurposing is an excellent option for discovery of already used drugs, effective against COVID-19, lowering the cost of production, and shortening the period of delivery, especially when preclinical safety studies have already been performed. There are many approved drugs that showed significant results against COVID-19, like ivermectin and hydrochloroquine, including alternative treatment options against COVID-19, utilizing herbal medicine. SHORT CONCLUSION: This article summarized 11 repurposing drugs, their positive and negative health implications, along with traditional herbal alternatives, that harvest strong potential in efficient treatments options against COVID-19, with small or no significant side effects. Out of 11 repurposing drugs, four drugs are in status of emergency approval, most of them being in phase IV clinical trials. The first repurposing drug approved for clinical usage is remdesivir, whereas chloroquine and hydrochloroquine approval for emergency use was revoked by FDA for COVID-19 treatment in June 2020.

SELECTION OF CITATIONS
SEARCH DETAIL
...