Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744521

ABSTRACT

A self-folding method that can fold a thick (~10 µm) metal layer with a large curvature (>1 mm−1) and is resistant to repetitive folding deformation is proposed. Given the successful usage of hinged origami/kirigami structures forms in deployable structures, they show strong potential for application in stretchable electronic devices. There are, however, two key difficulties in applying origami/kirigami methods to stretchable electronic devices. The first is that a thick metal layer used as the conductive layer of electronic devices is too hard for self-folding as it is. Secondly, a thick metal layer breaks on repetitive folding deformation at a large curvature. To overcome these difficulties, this paper proposes a self-folding method using hinges on a thick metal layer by applying a meander structure. Such a structure can be folded at a large curvature even by weak driving forces (such as those produced by self-folding) and has mechanical resistance to repetitive folding deformation due to the local torsional deformation of the meander structure. To verify the method, the large curvature self-folding of thick metal layers and their mechanical resistance to repetitive folding deformation is experimentally demonstrated. In addition, an origami/kirigami hybrid stretchable electronic device with light-emitting diodes (LEDs) is fabricated using a double-tiling structure called the perforated extruded Miura-ori.

2.
Sci Rep ; 11(1): 18631, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650126

ABSTRACT

Insects have acquired various types of wings over their course of evolution and have become the most successful terrestrial animals. Consequently, the essence of their excellent environmental adaptability and locomotive ability should be clarified; a simple and versatile method to artificially reproduce the complex structure and various functions of these innumerable types of wings is necessary. This study presents a simple integral forming method for an insect-wing-type composite structure by 3D printing wing frames directly onto thin films. The artificial venation generation algorithm based on the centroidal Voronoi diagram, which can be observed in the wings of dragonflies, was used to design the complex mechanical properties of artificial wings. Furthermore, we implemented two representative functions found in actual insect wings: folding and coupling. The proposed crease pattern design software developed based on a beetle hindwing enables the 3D printing of foldable wings of any shape. In coupling-type wings, the forewing and hindwing are connected to form a single large wing during flight; these wings can be stored compactly by disconnecting and stacking them like cicada wings.

SELECTION OF CITATIONS
SEARCH DETAIL
...