Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Basic Microbiol ; 53(7): 617-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22915326

ABSTRACT

CH(4) is known to be generated during the most active phase of composting, even in well-managed composting piles. In this manuscript, we studied the influence of biochar on the CH(4) metabolism during composting of cattle manure and local organic wastes. We evaluated the presence of methanogens and methanotrophs in the composting piles quantified by the level of mcrA encoding methyl coenzyme M reductase alpha subunit and pmoA encoding particulate methane monooxygenase. A decrease of methanogens (mcrA) and an increase of methanotrophs (pmoA) were measured in the composting mixture containing biochar during the most active phase of composting. During the thermophilic phase, the mcrA/pmoA ratios obtained in the composting piles with biochar were twofold lower than in the pile without biochar.


Subject(s)
Charcoal/metabolism , Methane/metabolism , Temperature , Animals , Cattle , Charcoal/chemistry , Manure/microbiology , Oxidoreductases/metabolism , Soil
2.
Bioresour Technol ; 110: 396-404, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22377478

ABSTRACT

The aim of this study was to assess the effect of a 2% (v/v) addition of biochar on the quality of a composting mixture prepared with poultry manure and different local organic wastes (rice husk and apple pomace). Compost quality was evaluated in terms of typical stabilisation indices, the microbial biomass and selected enzymatic activities related to the C, N and P cycles. The main effects of biochar were a 10% increase in C captured by humic substance extraction and a 30% decrease of water-soluble C, due to an enhanced degradation rate and/or the sorption of these labile compounds into the biochar. The urease, phosphatase and polyphenol oxidase activities of the biochar-blended compost were enhanced by 30-40% despite the lower amount of microbial biomass. Denaturing gradient gel electrophoresis revealed a higher diversity of fungi in biochar-amended compost, suggesting a change in microbial composition compared to the unamended compost.


Subject(s)
Manure , Poultry , Soil , Animals , Biomass , Catechol Oxidase/metabolism , Hydrolysis , Phosphoric Monoester Hydrolases/metabolism , Urease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...