Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37508408

ABSTRACT

The functionality of food-derived nucleotides is revealed when nucleotide components are ingested in emergency situations, such as during stress loading, though it is difficult to elucidate the physiological function of dietary nucleotide supplementation. Using a stress load experimental system utilizing territoriality among male mice, we evaluated whether DNA sodium salt derived from salmon milt (DNA-Na) has stress-relieving effects. It was found that stress was reduced in mice fed a diet containing a 1% concentration of DNA-Na, but this was insignificant for yeast-derived RNA. Next, we attempted to elucidate the anti-stress effects of DNA-Na using another experimental system, in which mice were subjected to chronic crowding stress associated with aging: six mice in a cage were kept until they were 7 months of age, resulting in overcrowding. We compared these older mice with 2-month-old mice that were kept in groups for only one month. The results show that the expression of genes associated with hippocampal inflammation was increased in the older mice, whereas the expression of these genes was suppressed in the DNA-Na-fed group. This suggests that dietary DNA intake may suppress inflammation in the brain caused by stress, which increases with age.

2.
Biosci Biotechnol Biochem ; 87(2): 197-207, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36521839

ABSTRACT

The protamine-derived peptide arginine-proline-arginine (RPR) can ameliorate lifestyle-related diseases such as obesity and hypercholesterolemia. Thus, we hypothesized that the hypolipidemic activity of RPR could attenuate events leading to non-alcoholic fatty liver disease. Addition of 2 m m oleic acid (OA) to the culture medium induced fatty liver conditions in HepG2 cells. The OA + RPR group showed significantly decreased cellular or medium triglyceride (TG) level compared with the OA group. Stearoyl-CoA desaturase-1 (SCD1) or sterol regulatory element-binding protein 1 (SREBP1) protein level was significantly lower in the OA + RPR group than in the OA group. In the R + P + R amino acid mixture-treated group, the TG level was not significantly different from that in the OA-treated group. The OA + RP- or OA + PR-treated groups showed significantly decreased cellular TG level compared with the OA group. Moreover, the effect of RPR disappeared when the peptide transporter 1 (PepT1) was knocked down with a siRNA. Collectively, our results demonstrated that RPR effectively ameliorated hepatic steatosis in HepG2 cells via the PepT1 pathway.


Subject(s)
Lipogenesis , Non-alcoholic Fatty Liver Disease , Humans , Oleic Acid/pharmacology , Hep G2 Cells , Peptide Transporter 1/metabolism , Protamines , Non-alcoholic Fatty Liver Disease/metabolism , Peptides/metabolism , Proline/metabolism
3.
Heliyon ; 7(11): e08318, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34816032

ABSTRACT

Tumor necrosis frequently occurs in malignant tumors, showing rapid growth and invasion. This phenomenon is generally regarded as simple ischemic necrosis due to insufficient tumor vessels and blood supply. However, the necrotic tissue contains high amount of nuclear substances, DNA, and nucleoproteins that may affect the surrounding tumor cells by promoting or suppressing the tumor cell growth in vivo. This study focused on the effects of an externally administered water-soluble nuclear crude extract (SNE) containing nuclear protein and oligonucleotides on several human cancer and noncancer cell lines. The results demonstrated that the SNE suppressed cell growth in cancer and noncancer cells in vitro. Through the flow cytometry analysis of the nuclear DNA content, it was observed that the SNE increased and decreased cell proportion in the S and G2/M phases, respectively, thereby suggesting that the cell growth inhibition was due to cell cycle delay, and not due to apoptosis. These studies suggest that the high-concentration of extracellular nucleotides generated as a result of tumor necrosis and/or released from infiltrated neutrophils could suppress the growth of surrounding cancer and intrinsic cells, which provides us some insights into an alternative anticancer strategy for patients with highly malignant necrotic tumor.

4.
J Oleo Sci ; 70(11): 1651-1659, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34645749

ABSTRACT

Women are more resistant than men to the development of vascular diseases. However, menopause is a factor leading to deterioration of female vascular integrity, and it is reported that the risk of vascular diseases such as atherosclerosis and abdominal aortic aneurysm is increased in postmenopausal women. Although it is suggested that perivascular adipose tissue (PVAT) is deeply involved in the increased risk of vascular disease development, the effect of menopause on PVAT integrity is unknown. In this study, we aimed to elucidate the effect of menopause on PVAT in ovariectomized (OVX) rats. PVAT was divided into 4 regions based on characteristics. Hypertrophy and increased inflammation of adipocytes in the PVAT were observed in the OVX group, but the effects of OVX were different for each region. OVX induced matrix metalloproteinase (MMP) -9 which degrade extracellular matrix such as elastin and collagen fibers in PVAT. Degeneration of the arterial fibers of the thoracic and abdominal aorta were observed in the OVX group. These results indicate that OVX can cause dysfunction of PVAT which can cause degradation of arterial fibers. Appropriate management of PVAT may play an important role in the prevention and treatment of diseases originating from ovarian hypofunction.


Subject(s)
Adipocytes/pathology , Adipose Tissue/pathology , Aortic Aneurysm, Abdominal/etiology , Aortic Aneurysm, Abdominal/pathology , Arteries/pathology , Atherosclerosis/etiology , Atherosclerosis/pathology , Menopause/physiology , Ovariectomy/adverse effects , Ovary/physiology , Animals , Aorta/pathology , Arteries/cytology , Collagen/metabolism , Elastin/metabolism , Extracellular Matrix/metabolism , Female , Matrix Metalloproteinase 9/metabolism , Rats, Sprague-Dawley
5.
Plants (Basel) ; 10(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34451652

ABSTRACT

TAD1 (Triticum aestivum defensin 1) is a plant defensin specifically induced by low temperature in winter wheat. In this study, we demonstrated that TAD1 accumulated in the apoplast during cold acclimation and displayed antifungal activity against the pink snow mold fungi Microdochium nivale. When M. nivale was treated with TAD1, Congo red-stainable extracellular polysaccharides (EPS) were produced. The EPS were degradable by cellulase treatment, suggesting the involvement of ß-1,4 glucans. Interestingly, when the fungus was treated with FITC-labeled TAD1, fluorescent signals were observed within the EPS layer. Taken together, these results support the hypothesis that the EPS plays a role as a physical barrier against antimicrobial proteins secreted by plants. We anticipate that the findings from our study will have broad impact and will increase our understanding of plant-snow mold interactions under snow.

6.
Nutrients ; 13(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34444660

ABSTRACT

Dietary protamine can ameliorate hyperlipidemia; however, the protamine-derived active peptide and its hypolipidemic mechanism of action are unclear. Here, we report the discovery of a novel anti-obesity and hypocholesterolemic peptide, RPR (Arg-Pro-Arg), derived from protamine in mice fed a high-fat diet for 50 days. Serum cholesterol levels were significantly lower in the protamine and RPR groups than in the control group. White adipose tissue weight was significantly decreased in the protamine and RPR groups. The fecal excretion of cholesterol and bile acid was significantly higher in the protamine and RPR groups than in the control group. We also observed a significant decrease in the expression of hepatic SCD1, SREBP1, and adipocyte FAS mRNA, and significantly increased expression of hepatic PPARα and adipocyte PPARγ1 mRNA in the protamine group. These findings demonstrate that the anti-obesity effects of protamine are linked to the upregulation of adipocyte PPARγ1 and hepatic PPARα and the downregulation of hepatic SCD1 via SREBP1 and adipocyte FAS. RPR derived from protamine has a crucial role in the anti-obesity action of protamine by evaluating the effective dose of adipose tissue weight loss.


Subject(s)
Adipose Tissue, White/drug effects , Anti-Obesity Agents/pharmacology , Anticholesteremic Agents/pharmacology , Cholesterol/blood , Obesity/drug therapy , Oligopeptides/pharmacology , Protamines/pharmacology , Adipose Tissue, White/metabolism , Adipose Tissue, White/physiopathology , Adiposity/drug effects , Animals , Biomarkers/blood , Diet, High-Fat , Disease Models, Animal , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Weight Loss/drug effects
7.
J Med Food ; 22(4): 408-415, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30990754

ABSTRACT

Salmon milt extract contains high levels of nucleic acids and has antioxidant potential. Although salmon milt extract is known to improve impaired brain function in animal models with brain disease, its effects on learning and memory ability in healthy subjects is unknown. The purpose of the present study was to clarify the effect of hydrolyzed salmon milt extract (HSME) on object recognition and object location memory under normal conditions. A diet containing 2.5% HSME induced normal mice to devote more time to exploring novel and moved objects than in exploring familiar and unmoved objects, as observed during novel object recognition and spatial recognition tests, respectively. A diet containing 2.5% nucleic acid fraction purified from HSME also induced similar effects, as measured by the same behavioral tests. This suggests that the nucleic acids may be a functional component contributing to the effects of HSME on brain function. Quantitative polymerase chain reaction analysis revealed that gene expression of the markers for brain parenchymal cells, including neural stem cells, astrocytes, oligodendrocytes, and microglia, in the hippocampi of mice on an HSME diet was higher than that in mice on a control diet. Oral administration of HSME increased concentrations of cytosine, cytidine, and deoxycytidine in the hippocampus. Overall, ingestion of HSME may enhance object recognition and object location memory under normal conditions in mice, at least, in part, via the activation of brain parenchymal cells. Our results thus indicate that dietary intake of this easily ingestible food might enhance brain function in healthy individuals.


Subject(s)
Cytidine/metabolism , Hippocampus/metabolism , Memory , Salmon/metabolism , Semen/chemistry , Animals , Brain/physiology , Learning , Male , Mice , Recognition, Psychology
8.
J Nutr Sci Vitaminol (Tokyo) ; 64(4): 271-276, 2018.
Article in English | MEDLINE | ID: mdl-30175790

ABSTRACT

Abdominal aortic aneurysm (AAA) is a vascular disease characterized by chronic inflammation in the infrarenal aorta. Epidemiologic data have clearly linked tobacco smoking to aneurysm formation and a faster rate of expansion. It suggested that nicotine, one of the main ingredients of tobacco, has been suggested to be associated with AAA development and rupture. In the condition where no established drugs are available; therefore, an effective approach to prevent the vascular damage from nicotine consumption may be the use of dietary functional food factors. However, little is known about the relationship between dietary components and AAA. In this study, we estimated the effect of dietary deoxyribonucleic acid (DNA) on the vascular wall. After habituation for 5 d, the mice were divided into four groups: control diet and distilled water group (C), DNA-Na diet and distilled water group (DNA), control diet and 0.5 mg/mL nicotine solution group (C-Nic), DNA-Na diet, and 0.5 mg/mL nicotine solution group (DNA-Nic). The dietary DNA attenuated the degradation of elastin fibers induced by nicotine administration. The areas stained positive for MMP-2 in the DNA-Nic group were significantly suppressed compared to C-Nic mice. These data suggest that the dietary DNA may prevent the weakening of the aortic wall via inhibition of the MMP-2-dependent pathway. In conclusion, we have revealed the protective effect of dietary DNA on the vascular pathology of nicotine-administrated mice. A nucleic acid-rich diet might be useful for people who consume nicotine via smoking, chewing tobacco, or nicotine patches.


Subject(s)
Aorta, Abdominal/metabolism , Aortic Aneurysm, Abdominal/prevention & control , DNA/therapeutic use , Dietary Supplements , Disease Models, Animal , Elastin/metabolism , Endothelium, Vascular/metabolism , Adventitia/drug effects , Adventitia/immunology , Adventitia/metabolism , Adventitia/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/therapeutic use , Aorta, Abdominal/drug effects , Aorta, Abdominal/immunology , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Cardiovascular Agents/therapeutic use , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Immunohistochemistry , Male , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase 2/metabolism , Mice, Inbred C57BL , Nicotine/toxicity , Oxidative Stress/drug effects , Proteolysis/drug effects
9.
Mar Drugs ; 14(12)2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27999369

ABSTRACT

Dietary nucleotides play a role in maintaining the immune responses of both animals and humans. Oral administration of nucleic acids from salmon milt have physiological functions in the cellular metabolism, proliferation, differentiation, and apoptosis of human small intestinal epithelial cells. In this study, we examined the effects of DNA-rich nucleic acids prepared from salmon milt (DNSM) on the development of liver fibrosis in an in vivo ethanol-carbon tetrachloride cirrhosis model. Plasma aspartate transaminase and alanine transaminase were significantly less active in the DNSM-treated group than in the ethanol plus carbon tetrachloride (CCl4)-treated group. Collagen accumulation in the liver and hepatic necrosis were observed histologically in ethanol plus CCl4-treated rats; however, DNSM-treatment fully protected rats against ethanol plus CCl4-induced liver fibrosis and necrosis. Furthermore, we examined whether DNSM had a preventive effect against alcohol-induced liver injury by regulating the cytochrome p450 2E1 (CYP2E1)-mediated oxidative stress pathway in an in vivo model. In this model, CYP2E1 activity in ethanol plus CCl4-treated rats increased significantly, but DNSM-treatment suppressed the enzyme's activity and reduced intracellular thiobarbituric acid reactive substances (TBARS) levels. Furthermore, the hepatocytes treated with 100 mM ethanol induced an increase in cell death and were not restored to the control levels when treated with DNSM, suggesting that digestive products of DNSM are effective for the prevention of alcohol-induced liver injury. Deoxyadenosine suppressed the ethanol-induced increase in cell death and increased the activity of alcohol dehydrogenase. These results suggest that DNSM treatment represents a novel tool for the prevention of alcohol-induced liver injury.


Subject(s)
Carbon Tetrachloride/pharmacology , Ethanol/pharmacology , Liver/drug effects , Nucleoproteins/pharmacology , Salmon/metabolism , Administration, Oral , Alanine Transaminase/blood , Animals , Apoptosis/drug effects , Aspartate Aminotransferases/blood , Collagen/analysis , Cytochrome P-450 CYP2E1/metabolism , DNA/metabolism , Glutathione/metabolism , Hepatocytes/drug effects , Humans , Lipid Peroxidation/drug effects , Liver Cirrhosis/metabolism , Liver Diseases/pathology , Male , Models, Biological , Nucleoproteins/isolation & purification , Rats , Superoxide Dismutase/metabolism
10.
Brain Behav ; 6(6): e00477, 2016 06.
Article in English | MEDLINE | ID: mdl-27134772

ABSTRACT

BACKGROUND: Clinically used antidepressants suffer from various side effects. Therefore, we searched for a safe antidepressant with minimal side effects among food ingredients that are distributed to the brain. Here, we focused on ERGO (ergothioneine), which is a hydrophilic antioxidant and contained at high levels in edible golden oyster mushrooms. ERGO is a typical substrate of carnitine/organic cation transporter OCTN1/SLC22A4, which is expressed in the brain and neuronal stem cells, although little is known about its permeation through the BBB (blood-brain barrier) or its neurological activity. METHODS: To clarify the exposure of ERGO to brain and the possible antidepressant-like effect after oral ingestion, ERGO or GOME (golden oyster mushroom extract) which contains 1.2% (w/w) ERGO was mixed with feed and provided to mice for 2 weeks, and then ERGO concentration and antidepressant-like effect were evaluated by LC-MS/MS and FST (forced swimming test) or TST (tail suspension test), respectively. RESULTS: Diet containing ERGO or GOME greatly increased the ERGO concentrations in plasma and brain, and significantly decreased the immobility time in both FST and TST. The required amount of GOME (~37 mg/day) to show the antidepressant-like effect corresponds to at most 8 g/day in humans. In mice receiving GOME-containing diet, doublecortin-positive cells showed a significant increase from the basal level, suggesting promotion of neuronal differentiation. CONCLUSION: Thus, orally ingested ERGO is transported across the BBB into the brain, where it may promote neuronal differentiation and alleviate symptoms of depression at plausibly achieved level of daily ingestion.


Subject(s)
Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Behavior, Animal/drug effects , Brain/metabolism , Ergothioneine/pharmacology , Plant Extracts/pharmacology , Pleurotus , Animals , Antidepressive Agents/administration & dosage , Antidepressive Agents/blood , Antioxidants/administration & dosage , Antioxidants/metabolism , Brain/drug effects , Depression/diet therapy , Depression/drug therapy , Ergothioneine/administration & dosage , Ergothioneine/blood , Male , Mice , Mice, Inbred C57BL , Plant Extracts/administration & dosage , Plant Extracts/blood
11.
J Pharm Sci ; 105(5): 1779-1789, 2016 05.
Article in English | MEDLINE | ID: mdl-27020986

ABSTRACT

Xenobiotic transporters play key roles in disposition of certain therapeutic agents, although limited information is available on their roles other than pharmacokinetic issues. Here, suppressive effect of multispecific organic cation transporter OCTN1/SLC22A4 on liver fibrosis was proposed in liver injury models. After injection of hepatotoxins such as dimethylnitrosamine (DMN) or concanavalin A, hepatic fibrosis, and oxidative stress, evaluated in terms of Sirius red and 4-hydroxy-2-nonenal staining, respectively, were more severe in liver of octn1/slc22a4 gene knockout (octn1(-/-)) mice than that in wild-type mice. DMN treatment markedly increased α-smooth muscle actin and F4/80, markers of activated stellate and Kupffer cells, respectively, in liver of octn1(-/-), but had less effect in wild-type mice. Thus, octn1/slc22a4 gene deletion results in more severe hepatic fibrosis, oxidative stress, and inflammation. DMN-treated wild-type mice showed increased Octn1 staining and hepatic concentration of its food-derived antioxidant ergothioneine (ERGO). The upregulated Octn1 was co-localized with α-smooth muscle actin. Functional expression of Octn1 was demonstrated in activated human hepatic stellate cell lines, LI90 and LX-2. Provision of ERGO-rich feed ameliorated DMN-induced liver fibrosis and oxidative stress. Overall, Octn1 is upregulated in activated stellate cells, resulting in increased delivery of its substrate antioxidant ERGO and a protective effect against liver fibrosis.


Subject(s)
Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/prevention & control , Membrane Proteins/deficiency , Xenobiotics/metabolism , Animals , Carrier Proteins/analysis , Cell Line , Female , HEK293 Cells , Hepatic Stellate Cells/chemistry , Humans , Membrane Proteins/analysis , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Organic Cation Transport Proteins , Symporters
12.
Biosci Biotechnol Biochem ; 79(5): 747-59, 2015.
Article in English | MEDLINE | ID: mdl-25559339

ABSTRACT

The expression of the gene for a proteinase (Rep1) is upregulated by gibberellins. The CAACTC regulatory element (CARE) of the Rep1 promoter is involved in the gibberellin response. We isolated a cDNA for a CARE-binding protein containing a Myb domain in its carboxyl-terminal region and designated the gene Carboxyl-terminal Myb1 (CTMyb1). This gene encodes two polypeptides of two distinctive lengths, CTMyb1L and CTMyb1S, which include or exclude 213 N-terminal amino acid residues, respectively. CTMyb1S transactivated the Rep1 promoter in the presence of OsGAMyb, but not CTMyb1L. We observed an interaction between CTMyb1S and the rice prolamin box-binding factor (RPBF). A bimolecular fluorescence complex analysis detected the CTMyb1S and RPBF complex in the nucleus, but not the CTMyb1L and RPBF complex. The results suggest that the arrangement of the transfactors is involved in gibberellin-inducible expression of Rep1.


Subject(s)
Germination/genetics , Gibberellins/metabolism , Oryza/genetics , Plant Proteins/metabolism , Amino Acid Sequence , Arabidopsis Proteins/genetics , Base Sequence , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Molecular Sequence Data , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Plant Proteins/genetics , Promoter Regions, Genetic , Seeds/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Plant Signal Behav ; 7(11): 1477-83, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22990449

ABSTRACT

Gene silencing technology, such as RNA interference (RNAi), is commonly used to reduce gene expression in plant cells, and exogenous double-stranded RNA (dsRNA) can induce gene silencing in higher plants. Previously, we showed that the delivery of double-stranded DNA (dsDNA) fragments, such as PCR products of an endogenous gene sequence, into fern (Adiantum capillus-veneris) gametophytic cells induces a sequence-specific gene silencing that we termed DNAi. In this study, we used a neochrome 1 gene (NEO1) that mediates both red light-induced chloroplast movement and phototropism as a model of DNAi and confirmed that the NEO1 function was suppressed by the repression of the NEO1 gene. Interestingly, the gene silencing effect by DNAi was found in the progeny. Cytosine methylation was detected in the NEO1-silenced lines. The DNA modifications was present in the transcriptional region of NEO1, but no differences between wild type and the silenced lines were found in the downstream region of NEO1. Our data suggest that the DNAi gene silencing effect that was inherited throughout the next generation is regulated by epigenetic modification. Furthermore, the histone deacetylase inhibitor, trichostatin A (TSA), recovered the expression and function of NEO1 in the silenced lines, suggesting that histone deacetylation is essential for the direct suppression of target genes by DNAi.


Subject(s)
Epigenesis, Genetic/genetics , Ferns/genetics , DNA Methylation/genetics , Epigenesis, Genetic/drug effects , Ferns/drug effects , Gene Silencing , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Plant Proteins/genetics
14.
Plant Mol Biol ; 72(4-5): 519-31, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20024669

ABSTRACT

Cold acclimation requires substantial alteration in membrane property. In contrast to well-documented fatty acid unsaturation during cold acclimation, changes in phospholipid biosynthesis during cold acclimation are less understood. Here, we isolated and characterized two aminoalcoholphosphotransferase (AAPT) cDNAs, TaAAPT1 and TaAAPT2, from wheat. AAPTs utilize diacylglycerols and CDP-choline/ethanolamine as substrates and catalyze the final step of the CDP-choline/ethanolamine pathway for phosphatidylcholine (PC)/phosphatidylethanolamine (PE) synthesis, respectively. Functionality of TaAAPT1 and TaAAPT2 was demonstrated by heterologous expression in a yeast cpt1Delta ept1Delta double mutant that lacks both AAPT activities. Detailed characterization of AAPT activities from the transformed mutant cells indicated that TaAAPT1 is an ECPT-type enzyme with higher ethanolamine phosphotransferase (EPT) activity than choline phosphotransferase (CPT) activity, while TaAAPT2 is a CEPT-type with the opposite substrate preference. Transient expression of GFP-fused TaAAPT1 and TaAAPT2 proteins in wheat and onion cells indicated they are localized to both the endoplasmic reticulum and Golgi apparatus, suggesting that the final synthesis of PE and PC via the CDP-choline/ethanolamine pathway occurs in these organella. Quantitative PCR analyses revealed that TaAAPT1 expression is strongly induced by cold, while TaAAPT2 was constitutively expressed at lower levels. Measurement of phospholipid content in wheat leaves indicated that PE is more prominently increased in response to cold than PC and accordingly PE/PC ratio increased from 0.385 to 0.530 during 14 days of cold acclimation. Together, these data suggested that an increase in the PE/PC ratio during cold acclimation is regulated at the final step of the biosynthetic pathway.


Subject(s)
Phosphotransferases/biosynthesis , Phosphotransferases/genetics , Triticum/genetics , Triticum/metabolism , Acclimatization , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Cold Climate , DNA, Plant/genetics , Endoplasmic Reticulum/enzymology , Genes, Plant , Golgi Apparatus/enzymology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Membrane Lipids/metabolism , Models, Molecular , Molecular Sequence Data , Phosphatidylethanolamines/metabolism , Phosphotransferases/chemistry , Plants, Genetically Modified , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid
15.
Biochim Biophys Acta ; 1779(11): 780-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18471443

ABSTRACT

MicroRNAs are approximately 21-nt long, non-coding RNAs that play critical roles in post-transcriptional gene regulation. Even though a large number of miRNAs have been identified, annotating their functions remains a challenge. We develop a computational, transcriptome-based approach to annotating stress-inducible microRNAs in plants. With this approach, we find that nineteen microRNA genes of eleven microRNA families in Arabidopsis thaliana are up-regulated by cold stress. Our experiments validate that among the eleven microRNAs, eight are differentially induced and three are constantly expressed under low temperature. Our result expands the number of cold-inducible microRNAs from four to eight. A promoter analysis further reveals that the cold-responsive microRNA genes contain many known stress-related cis-regulatory elements in their promoters. Our analysis also indicates that many signaling pathways, such as auxin pathways, may be affected by cold-inducible microRNAs. Our approach can be applied to plant microRNAs responding to other abiotic and biotic stresses. The research demonstrates that machine learning methods, augmented by wet-lab analysis, hold a great promise for functional annotation of microRNAs.


Subject(s)
Arabidopsis/genetics , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant , MicroRNAs/genetics , RNA, Plant/genetics , Base Sequence , Models, Genetic , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regulatory Sequences, Ribonucleic Acid/genetics , Reproducibility of Results
16.
Mol Genet Genomics ; 274(5): 445-53, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16184390

ABSTRACT

As a means to study the function of plasma membrane proteins during cold acclimation, we have isolated a cDNA clone for wpi6 which encodes a putative plasma membrane protein from cold-acclimated winter wheat. The wpi6 gene encodes a putative 5.9 kDa polypeptide with two predicted membrane-spanning domains, the sequence of which shows high sequence similarity with BLT101-family proteins from plants and yeast. Strong induction of wpi6 mRNA was observed during an early stage of cold acclimation in root and shoot tissues of both winter and spring wheat cultivars. In contrast to blt101 in barley, wpi6 mRNA was also induced by drought and salinity stresses, and exogenous application of ABA. Expression of wpi6 in a Deltapmp3 mutant of Saccharomyces cerevisiae, which is disturbed in plasma membrane potential due to the lack of a BLT101-family protein, partially complemented NaCl sensitivity of the mutant. Transient expression analysis of a WPI6::GFP fusion protein in onion epidermal cells revealed that WPI6 is localized in the plasma membrane. Taken together, these data suggested that WPI6 may have a protective role in maintaining plasma membrane function during cold acclimation in wheat.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , Genes, Plant , Membrane Proteins/genetics , Triticum/genetics , Adaptation, Physiological , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA Primers , DNA, Complementary , Genetic Complementation Test , Membrane Proteins/chemistry , Molecular Sequence Data , Sequence Homology, Amino Acid
17.
J Plant Res ; 118(3): 223-7, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15940394

ABSTRACT

The analysis of expressed sequences from a diverse set of plant species has fueled the increase in understanding of the complex molecular mechanisms underlying plant growth regulation. While representative data sets can be found for the major branches of plant evolution, fern species data are lacking. To further the availability of genetic information in pteridophytes, a normalized cDNA library of Adiantum capillus-veneris was constructed from prothallia grown under white light. A total of 10,420 expressed sequence tags (ESTs) were obtained and clustering of these sequences resulted in 7,100 nonredundant clusters. Of these, 1,608 EST clusters were found to be similar to sequences of known function and 1,092 EST clusters showed similarity to sequences of unknown function. Given the usefulness of Adiantum for developmental studies, the sequence data represented in this report stand to make a significant contribution to the understanding of plant growth regulation, particularly for pteridophytes.


Subject(s)
Adiantum/genetics , Expressed Sequence Tags , Gene Expression Profiling , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology
18.
Plant J ; 34(5): 635-45, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12787245

ABSTRACT

In germinating rice seeds, a cysteine proteinase (REP-1), synthesized in aleurone-layer cells, is a key enzyme in the degradation of the major storage protein, glutelin. The expression of the gene for REP-1 (Rep1) is induced by gibberellins (GAs) and repressed by abscisic acid (ABA). To identify GA-responsive elements in the Rep1 promoter, we developed a transient expression system in rice aleurone cells. Deletion and point-mutation analyses indicated that the GA-response complex was composed of TAACAGA, TAACGTA, and two copies of CAACTC. The two former sequences were identical to GAREs conserved in the promoter of genes for alpha-amylase and proteinases in cereals. The latter, termed as CAACTC regulatory elements (CAREs), were novel GAREs. Gain-of-function experiments revealed that two pairs of GARE and CARE were necessary and sufficient to confer GA inducibility. The sequences were also required for effective transactivation by the transcription factor OsGAMyb. Four copies of either GARE or CARE showed transactivation neither by OsGAMyb nor by GA induction. CARE and GARE were also found in the promoters of a rice alpha-amylase gene, RAmy1A, and a barley proteinase gene, EPB1, which are expressed in germinating seeds. Mutations of CARE in their promoters caused a loss of GA inducibility and GAMyb transactivation, suggesting that CARE is the regulatory element for GA-inducible expression of hydrolase genes in the germinating seeds.


Subject(s)
Endopeptidases/genetics , Gene Expression Regulation, Plant , Gibberellins/metabolism , Oryza/genetics , Response Elements/genetics , Seeds/metabolism , Up-Regulation , Base Sequence , Endopeptidases/metabolism , Genes, Plant/genetics , Mutation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Transcriptional Activation
19.
Planta ; 217(4): 676-85, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12684786

ABSTRACT

We previously showed that two major cysteine endopeptidases, REP-1 and REP-2, were present in germinated rice ( Oryza sativa L.) seeds, and that REP-1 was the enzyme that digests seed storage proteins. The present study shows that REP-2 is an asparaginyl endopeptidase that acts as an activator of REP-1, and we separated it into two forms, REP-2alpha (39 kDa) and REP-2beta (40 kDa), using ion-exchange chromatography and gel filtration chromatography. Although analysis of the amino terminals revealed that 10 amino acids of both forms were identical, their isoelectric points were different. SDS-PAGE/immunoblot analysis using an antiserum raised against legumain, an asparaginyl endopeptidase from jack bean, indicated that both forms were present in maturing and germinating rice seeds, and that their amounts transiently decreased in dry seeds. Northern blot analysis indicated that REP-2 mRNA was expressed in both maturing and germinating seeds. In germinating seeds, the mRNA was detected in aleurone layers but not in shoot and root tissues. Incubation of the de-embryonated seeds in 10(-6) M gibberellic acid induced the production of large amounts of REP-1, whereas REP-2beta levels declined rapidly. Southern blot analysis showed that there is one gene for REP-2 in the genome, indicating that both REP-2 enzymes are generated from a single gene. The structure of the gene was similar to that of beta-VPE and gamma-VPE isolated from Arabidopsis thaliana.


Subject(s)
Cysteine Endopeptidases/genetics , Oryza/genetics , Plant Proteins/genetics , Seeds/genetics , Abscisic Acid/pharmacology , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Cysteine Endopeptidases/metabolism , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Exons , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Gibberellins/pharmacology , Introns , Molecular Sequence Data , Oryza/enzymology , Oryza/growth & development , Phylogeny , Plant Proteins/metabolism , Seeds/enzymology , Seeds/growth & development , Sequence Analysis, DNA , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...