Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Open Life Sci ; 19(1): 20220826, 2024.
Article in English | MEDLINE | ID: mdl-38465344

ABSTRACT

Because of stress shielding effects, traditional titanium (Ti) alloy scaffolds have a high elastic modulus, which might promote looseness and bone disintegration surrounding the implant, increasing the likelihood of a second surgery. In contrast, 3D-printed porous Ti alloy scaffolds can reduce the scaffold weight while enhancing biocompatibility. Further, these scaffolds' porous nature allows bone tissue ingrowth as well as strong pore connectivity, which can improve nutrient absorption. Nevertheless, bare Ti alloy implants may fail because of inadequate bone integration; hence, adding a coating on the implant surface is an effective technique for improving implant stability. In this study, a composite coating comprising hydroxyapatite (HAP), chitosan (CS), tannic acid (TA) and copper ions (Cu2+) (Cu2+/TA/HAP composite coating) was prepared on the surface of 3D printed porous Ti alloy scaffolds using electrophoretic deposition. Using the standard plate count method, Live/Dead bacteria staining assay, FITC Phalloidin and 4',6-diamidino-2-phenylindole staining assay, and live/dead staining of cells we determined that the composite coating has better antibacterial properties and cytocompatibility as well as lower cytotoxicity. The Alkaline Phosphatase assay revealed that the coating results showed good osteogenesis potential. Overall, the composite coatings produced in this investigation give new potential for the application of Ti alloys in clinics.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021395

ABSTRACT

BACKGROUND:Bone mineral density is the clinical gold standard for determining bone strength,but bone mineral density is less sensitive to changes in bone mass,with large changes in bone mineral density only occurring when bone mass is significantly reduced,so bone mineral density has limited ability to predict changes in bone strength and fracture risk. OBJECTIVE:A model of the normal and osteoporotic hip joint was developed to analyze the stresses and deformation in the hip of normal and osteoporotic patients under single-leg standing conditions. METHODS:A healthy adult female volunteer at the age of 36 years was selected as the study subject.The CT data of the hip joint of this volunteer were obtained and saved in DICOM format.The hip joint model was reconstructed in three dimensions,and the material properties were assigned by the gray value assignment method to obtain the normal and osteoporotic hip joint models according to the empirical formula.The same boundary conditions and loads were set to simulate the stresses and deformation in the normal and osteoporotic hip joints in the single-leg standing position. RESULTS AND CONCLUSION:(1)In the finite element model of the normal and osteoporotic hip,the stress distribution was more concentrated in the medial region of the femoral neck.(2)In the hip bone,the stress distribution was mainly concentrated in the upper part of the acetabulum.(3)The stress peaks in the medial femoral neck and upper acetabulum were larger in the normal hip model than in the osteoporotic hip model,probably due to the reduced bone strength of the osteoporotic bone.(4)The peak Von Mises of both normal and osteoporotic hip models were concentrated on the medial femoral neck,and the peak Von Mises of the hip bone was smaller,indicating that the overall effect of osteoporosis on hip bone stresses was relatively small.(5)In terms of deformation in the single-leg standing position,the maximum deformation in the normal hip model was located at the acetabulum and femoral head,and the maximum deformation was located at the upper part of the greater trochanter of the femur.(6)It is suggested that the finite element analysis method to model the values of parameters related to bone tissue in osteoporosis may improve clinical prediction of bone strength changes and fracture risk.It is explained from the biomechanical view that the intertrochanteric femur and femoral neck are good sites for osteoporotic hip fractures.

3.
Chinese Journal of Orthopaedics ; (12): 97-103, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-993415

ABSTRACT

Objective:To investigate the effect of 3D-printed customized flanged cup in hip revision with severe acetabular bone defects.Methods:Since February 2017, 10 cases of 3D-printed customized flanged cups were used in hip revision with severe acetabular bone defects, including 2 cases of Paprosky type IIIA and 8 cases of Paprosky type IIIB. There were 5 males and 5 females, mean age 73.6±8.1 yrs (range, 62-87 yrs), 5 left and 5 right cases. The preoperative thin-layer CT scan was preformed to reverse reconstruct digital pelvis. Five cases of one-piece flanged cups and 5 cases of decomposed flanged cups, including 3 cases of composite one-piece cups were designed by computer. The surgery was performed strictly according to the plan.Postoperative follow-up was performed to evaluate the Harris score. Operation time,intraoperative bleeding and other complications such as vascular and nerve injury, postoperative infection, and dislocation were counted. Pelvic X-ray was used to assess the height and horizontal position of the center of rotation and the stability of the prosthesis.Results:The surgical procedure was successful, with an average operative time of 147.9±48.3 min (range, 96-212 min) and an average intraoperative bleeding of 730.4±262.6 ml (range, 500-1 300 ml). The mean time of final follow-up was 40.8±18.7 months (range, 16-70 months) after surgery. At the last follow-up, the average Harris score was 83.80±6.73, with 4 cases excellent, 5 cases good, and 1 case fair. The excellent and good rate was 90%. The last Harris score was significantly higher than that before operation 28.60±8.40 ( t=16.84, P<0.001). The height of affected hip joint rotation center decreased from 46.24±7.74 mm before operation to 15.54±2.54 mm after operation with significant difference ( t=14.61, P<0.001). It was slightly higher than the opposite side (13.81±1.48 mm), which had no significant difference ( t=1.83, P=0.100). The horizontal distance of affected hip joint rotation center increased from 33.79±5.27 mm before operation to 40.53±4.50 mm after operation with significant difference ( t=3.62, P=0.006). It had no significant difference ( t=1.28, P=0.232) compared with the opposite side (38.54±3.46 mm). All incisions were healed in one stage without infection, vascular or nerve injury. During the following-up, all prostheses were in satisfied position without loosening, dislocation or screw breaks. Conclusion:Digitally assisted 3D-printed flanged cups can be used in hip revision with severe acetabular bone defect. It can not only improve hip joint function, but also restore the acetabular rotation center and the prosthesis stability, which can achieve good early and mid-term effect.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-473160

ABSTRACT

Objective To research correlation of serum protein spectrometry and lymphoma markers for diffuse large B cell lymphoma (DLBCL) patients. Whether there is relative between the protein and prognosis will be further researched. Methods Serum protein spectrometry of 62 DLBCL patients was detected by the SELDI-TOF-MS technique and Weak cation exchange 2 (WCX2) chip. Lactate dehydrogenase (LDH) was detected by biochemistry method. Beta-2-microglobulin (β2-MG) and cancer antigen125(CA125)were detected by enzyme-linked immunosorbent assay (ELISA). The level of LDH, β2-MG and CA125 for DLBCL patients between 11×103~12×103 protein expressed positively and negatively was analyzed. Meanwhile,correlation analysis and survival analysis were done. Results LDH, β2-MG and CA125 in 11×103~12×103protein expressed positive group were (523.30±435.96)U/L, (3.23±1.24)mg/L, (81.07±61.39)U/L respectively,and they were higher than that in negative group (P<0.05). 11×103~12×103 protein was positive correlated to LDH, β2-MG and CA125 (P<0.01). The survival time in 11×103~12×103 protein expressed in positive group,in which median survival time was 11 months, was shorter than that in negative group(P <0.01). The survival time in LDH normal group was longer than that in increased group(P <0.01). The survival time of β2-MG and CA125 had no significant difference between increased group and normal group. Conclusion LDH and 11×103~12×103 protein are expected to be prognosis indicators for DLBCL patients.

SELECTION OF CITATIONS
SEARCH DETAIL