Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Energy Mater ; 1(7): 3267-3276, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30259009

ABSTRACT

Barium disilicide (BaSi2) has been regarded as a promising absorber material for high-efficiency thin-film solar cells. However, it has confronted issues related to material synthesis and quality control. Here, we fabricate BaSi2 thin films via an industrially applicable sputtering process and uncovered the mechanism of structure transformation. Polycrystalline BaSi2 thin films are obtained through the sputtering process followed by a postannealing treatment. The crystalline quality and phase composition of sputtered BaSi2 are characterized by Raman spectroscopy and X-ray diffraction (XRD). A higher annealing temperature can promote crystallization of BaSi2, but also causes an intensive surface oxidation and BaSi2/SiO2 interfacial diffusion. As a consequence, an inhomogeneous and layered structure of BaSi2 is revealed by Auger electron spectroscopy (AES) and transmission electron microscopy (TEM). The thick oxide layer in such an inhomogeneous structure hinders further both optical and electrical characterizations of sputtered BaSi2. The structural transformation process of sputtered BaSi2 films then is studied by the Raman depth-profiling method, and all of the above observations come to an oxidation-induced structure transformation mechanism. It interprets interfacial phenomena including surface oxidation and BaSi2/SiO2 interdiffusion, which lead to the inhomogeneous and layered structure of sputtered BaSi2. The mechanism can also be extended to epitaxial and evaporated BaSi2 films. In addition, a glimpse toward future developments in both material and device levels is presented. Such fundamental knowledge on structural transformations and complex interfacial activities is significant for further quality control and interface engineering on BaSi2 films toward high-efficiency solar cells.

2.
Nanomaterials (Basel) ; 8(6)2018 May 30.
Article in English | MEDLINE | ID: mdl-29848967

ABSTRACT

Composite insulation materials are an inseparable part of numerous electrical devices because of synergy effect between their individual parts. One of the main aims of the presented study is an introduction of the dielectric properties of nanoscale magnesium oxide powder via Broadband Dielectric Spectroscopy (BDS). These unique results present the behavior of relative permittivity and loss factor in frequency and temperature range. Following the current trends in the application of inorganic nanofillers, this article is complemented by the study of dielectric properties (dielectric strength, volume resistivity, dissipation factor and relative permittivity) of epoxy-based composites depending on the filler amount (0, 0.5, 0.75, 1 and 1.25 weight percent). These parameters are the most important for the design and development of the insulation systems. The X-ray diffraction patterns are presented for pure resin and resin with optimal filler amount (1 wt %), which was estimated according to measurement results. Magnesium oxide nanoparticles were also treated by addition of silane coupling agent ( γ -Glycidoxypropyltrimethoxysilane), in the case of optimal filler loading (1 wt %) as well. Besides previously mentioned parameters, the effects of surface functionalization have been observed by two unique measurement and evaluation techniques which have never been used for this evaluation, i.e., reduced resorption curves (RRCs) and voltage response method (VR). These methods (developed in our departments), extend the possibilities of measurement of composite dielectric responses related to DC voltage application, allow the facile comparability of different materials and could be used for dispersion level evaluation. This fact has been confirmed by X-ray diffraction analyses.

3.
ACS Appl Mater Interfaces ; 8(38): 25405-14, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27581943

ABSTRACT

Monolayers of six alkylphosphonic acids ranging from C8 to C18 were prepared by vacuum evaporation and incorporated into low-voltage organic field-effect transistors based on dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). Similar to solution-assembled monolayers, the molecular order for vacuum-deposited monolayers improved with increasing length of the aliphatic tail. At the same time, Fourier transform infrared (FTIR) measurements suggested lower molecular coverage for longer phosphonic acids. The comparison of FTIR and vibration frequencies calculated by density functional theory indicated that monodentate bonding does not occur for any phosphonic acid. All monolayers exhibited low surface energy of ∼17.5 mJ/m(2) with a dominating Lifshitz-van der Waals component. Their surface roughness was comparable, while the nanomechanical properties were varied but not correlated to the length of the molecule. However, large improvement in transistor performance was observed with increasing length of the aliphatic tail. Upon going from C8 to C18, the mean threshold voltage decreased from -1.37 to -1.24 V, the field-effect mobility increased from 0.03 to 0.33 cm(2)/(V·s), the off-current decreased from ∼8 × 10(-13) to ∼3 × 10(-13) A, and for transistors with L = 30 µm the on-current increased from ∼3 × 10(-8) to ∼2 × 10(-6) A, and the on/off-current ratio increased from ∼3 × 10(4) to ∼4 × 10(6). Similarly, transistors with longer phosphonic acids exhibited much better air and bias-stress stability. The achieved transistor performance opens up a completely "dry" fabrication route for ultrathin dielectrics and low-voltage organic transistors.

SELECTION OF CITATIONS
SEARCH DETAIL
...