Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 21(18): 6801-5, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25753376

ABSTRACT

A widely used principle is that shifts in the wavenumber of carboxylate stretching modes upon bonding with a metal center can be used to infer if the geometry of the bonding is monodentate or bidentate. We have tested this principle with ab initio modeling for aqueous metal carboxylate complexes and have shown that it does indeed hold. Modeling of the bonding of acetate and formate in aqueous solution to a range of cations was used to predict the infrared spectra of the metal-carboxylate complexes, and the wavenumbers of the symmetric and antisymmetric vibrational modes are reported. Furthermore, we have shown that these shifts in wavenumber occur primarily due to how bonding with the metal changes the carboxylate C-O bond lengths and O-C-O angle.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 134: 535-42, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25048288

ABSTRACT

The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm(-1) to 1250 cm(-1); this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm(-1) using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm(-1) to 1250 cm(-1) region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution.


Subject(s)
Anions/chemistry , Carboxylic Acids/chemistry , Models, Molecular , Quantum Theory , Spectrophotometry, Infrared , Water/chemistry
3.
J Phys Chem B ; 116(39): 11999-2006, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-22920269

ABSTRACT

Aqueous pK(a) values are calculated from first principles for a set of carboxylic acids using the SMD solvation model with various model chemistries, thermodynamic cycles, and treatments of explicit solvation. In all, 108 unique theoretical protocols are examined. The direct (D) and water proton exchange (PX) cycles are trialled along with a new approach, termed the semidirect (SD) cycle. The SD thermodynamic cycle offers some improvements over the D and PX schemes, as it bypasses the gas-phase heterolytic bond dissociation calculation required in the conventional D approach while also avoiding an aqueous OH(-) calculation required by the PX method when using water as the reference acid. With all three cycles, the recommended model chemistry employs M05-2X/cc-pVTZ Gibbs energies of solvation with a single discrete water molecule and a high-level composite method for the gas-phase reaction energies. With the SD cycle, these calculations result in a mean unsigned error of less than 1 pK(a) units, with respective mean signed error and maximum unsigned error of less than 0.5 and 2 pK(a) units. Similar results are obtained with the D and PX cycles, and further improvement is required in both the gas and aqueous phase ab initio energy calculations before we can truly discriminate between the thermodynamic cycles investigated here.

SELECTION OF CITATIONS
SEARCH DETAIL
...