Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 23(5): 1052-1059, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-27727488

ABSTRACT

In this study, we report the design, synthesis, and characterization of small 3 nm water soluble gold nanoparticles (AuNPs) that feature cyclopropenone-masked strained alkyne moieties capable of undergoing interfacial strain-promoted cycloaddition (i-SPAAC) with azides after exposure to UV-A light. A strained alkyne precursor was incorporated onto AuNPs by direct ligand exchange of a thiol-modified cyclopropenone-masked dibenzocyclooctyne (photoDIBO) ligand. These photoDIBO-AuNPs were characterized by 1 H NMR, IR, and UV/Vis spectroscopy, as well as transmission electron microscopy (TEM) and thermogravimetric analysis (TGA), and the extent of modification was quantified. Upon irradiation with UV-A light, photoDIBO-AuNPs underwent efficient and quantitative regeneration of the parent strained alkyne by photochemical decarbonylation to afford DIBO-derivatized AuNPs. DIBO-AuNPs were found to react cleanly and rapidly (k=5.3×10-2 m-1 s-1 ) by an interfacial strain-promoted alkyne-azide cycloadditon (i-SPAAC) with benzyl azide, which served as a simple model system. Furthermore, DIBO-AuNPs were reacted with various azides and a nitrone (interfacial strain-promoted alkyne-nitrone cycloaddition, i-SPANC) to showcase the generality of this approach for the facile modification of AuNP surfaces and their properties. The cyclopropenone-based photo-triggered click chemistry at the interface of water-soluble AuNPs offers exciting opportunities for the atom-by-atom control and assembly of functional materials for applications in materials and biomaterials science as well as in chemical biology.

2.
J Org Chem ; 81(19): 8850-8857, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27635662

ABSTRACT

An order of magnitude difference in photoreactivity between bis- (photo-DIBOD, 1) and mono-cyclopropenone-caged dibenzocyclooctadiynes (MC-DIBOD, 5) allows for selective monodecarbonylation of 1. Alternatively, 5 is prepared by selective mono-cyclopropanation of dibenzo[a,e]cyclooctadiyne (DIBOD). MC-DIBOD (5) permits efficient sequential SPAAC cross-linking of azide-derivatized substrates. Cycloaddition to 5 converts an azide moiety into a photocaged form of triazole-fused dibenzo[a,e]cyclooctyne (3). While the azide reactivity of MC-DIBOD (5) and DIBOD is similar to that of other dibenzocyclooctynes, fusion of triazole to the dibenzocyclooctyne system in 3 results in a 3 orders of magnitude enhancement in SPAAC rates. In methanol, 3 reacts with butyl azide at an astonishing rate of 34 M-1 s-1, thus representing the most reactive cyclooctyne analogue reported so far. MC-DIBOD (5) was utilized in the preparation of mixed bis-triazoles and derivatization of the protein BSA with fluorescent dye and polyethylene glycol.

3.
Chem Commun (Camb) ; 52(3): 553-6, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26538499

ABSTRACT

The first fully conjugated bis-cyclopropenone (photo-DIBOD), a derivative of dibenzo[a,e][8]annulene, has been synthesized. 350-420 nm irradiation of this robust compound results in the efficient formation of dibenzo [a,e] cyclooctadiyne, an unstable, but useful SPAAC cross-linking reagent. Since photo-DIBO doesn't react with organic azides, this method allows for the spatiotemporal control of the ligation of two azide-tagged substrates.


Subject(s)
Cross-Linking Reagents/chemistry , Cyclopropanes/chemistry , Diynes/chemistry , Light , Polycyclic Compounds/chemistry , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Molecular Structure , Rhodamines/chemistry
4.
Org Biomol Chem ; 12(31): 5905-10, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24984815

ABSTRACT

Alcohol dehydrogenases (ADHs) are enzymes that catalyze the reversible reduction of carbonyl compounds to their corresponding alcohols. We have been studying a thermostable, nicotinamide-adenine dinucleotide phosphate (NADP(+))-dependent, secondary ADH from Thermoanaerobacter ethanolicus (TeSADH). In the current work, we expanded our library of TeSADH and adopted the site-saturation mutagenesis approach in creating a comprehensive mutant library at W110. We used phenylacetone as a model substrate to study the effectiveness of our library because this substrate showed low enantioselectivity in our previous work when reduced using W110A TeSADH. Five of the newly designed W110 mutants reduced phenylacetone at >99.9% ee, and two of these mutants exhibit an enantiomeric ratio (E-value) of over 100. These five mutants also reduced 1-phenyl-2-butanone and 4-phenyl-2-butanone to their corresponding (S)-configured alcohols in >99.9% ee. These new mutants of TeSADH will likely have synthetic utility for reduction of aromatic ketones in the future.


Subject(s)
Alcohol Oxidoreductases/genetics , Hydrocarbons, Aromatic/metabolism , Ketones/metabolism , Mutation/genetics , Thermoanaerobacter/enzymology , Tryptophan/genetics , Chromatography, Gas , Hydrocarbons, Aromatic/chemistry , Ketones/chemistry , Kinetics , Models, Molecular , Mutant Proteins/metabolism , Oxidation-Reduction , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...