Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Sci Total Environ ; 927: 171153, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38460683

ABSTRACT

About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.

2.
Pediatr Res ; 95(1): 129-134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37591926

ABSTRACT

BACKGROUND: Inhomogeneous lung aeration is a significant contributor to preterm lung injury. EIT detects inhomogeneous aeration in the research setting. Whether LUS detects inhomogeneous aeration is unknown. The aim was to determine whether LUS detects regional inhomogeneity identified by EIT in preterm lambs. METHODS: LUS and EIT were simultaneously performed on mechanically ventilated preterm lambs. LUS images from non-dependent and dependent regions were acquired and reported using a validated scoring system and computer-assisted quantitative LUS greyscale analysis (Q-LUSMGV). Regional inhomogeneity was calculated by observed over predicted aeration ratio from the EIT reconstructive model. LUS scores and Q-LUSMGV were compared with EIT aeration ratios using one-way ANOVA. RESULTS: LUS was performed in 32 lambs (~125d gestation, 128 images). LUS scores were greater in upper anterior (non-dependent) compared to lower lateral (dependent) regions of the left (3.4 vs 2.9, p = 0.1) and right (3.4 vs 2.7, p < 0.0087). The left and right upper regions also had greater LUS scores compared to right lower (3.4 vs 2.7, p < 0.0087) and left lower (3.7 vs 2.9, p = 0.1). Q-LUSMGV yielded similar results. All LUS findings corresponded with EIT regional differences. CONCLUSION: LUS may have potential in measuring regional aeration, which should be further explored in human studies. IMPACT: Inhomogeneous lung aeration is an important contributor to preterm lung injury, however, tools detecting inhomogeneous aeration at the bedside are limited. Currently, the only tool clinically available to detect this is electrical impedance tomography (EIT), however, its use is largely limited to research. Lung ultrasound (LUS) may play a role in monitoring lung aeration in preterm infants, however, whether it detects inhomogeneous lung aeration is unknown. Visual LUS scores and mean greyscale image analysis using computer assisted quantitative LUS (Q-LUSMGV) detects regional lung aeration differences when compared to EIT. This suggests LUS reliably detects aeration inhomogeneity warranting further investigation in human trials.


Subject(s)
Lung Injury , Animals , Sheep , Infant, Newborn , Humans , Infant, Premature , Electric Impedance , Lung/diagnostic imaging , Sheep, Domestic
3.
Mil Psychol ; 35(5): 408-419, 2023.
Article in English | MEDLINE | ID: mdl-37615553

ABSTRACT

Health precautions implemented by the United Kingdom (UK) government to limit the spread of the Coronavirus Disease 2019 (COVID-19) led to the closure of many well-being support services in 2020. This created a need to re-think how impactful recovery support courses can be provided. One such service was that of the five-day Multi Activity Course (MAC) which was redesigned in accordance with national health guidelines to allow continued access for Wounded, Injured and Sick (WIS) military personnel to the service; the positive impacts of which are well established. This study investigated the influence of the newly developed Reduced numbers MAC (R-MAC) on the WIS participants lives during and for 12 months after attending. The R-MAC led to comparable impacts for participants well-being, at a time in which people's mental well-being was often being adversely affected. The positive mental well-being of the 261 participants improved by 33% throughout the course and remained 14% higher for the 37 participants who provided data six months after attending. Key facets of the experience that were most impactful for the participants were (i) shared experience with other veterans, (ii) discussing issues in a safe environment while receiving support from the staff and (iii) developing knowledge around self-help/personal development. Adapting to the challenging circumstances and developing the R-MAC mitigated against the already adverse impact of the COVID-19 pandemic for the WIS participants.


Subject(s)
COVID-19 , Military Personnel , Humans , COVID-19/epidemiology , Military Personnel/psychology , Pandemics , Mental Health , United Kingdom/epidemiology
4.
Environ Sci Technol ; 57(20): 7645-7665, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37157132

ABSTRACT

Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs' role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency's current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects.


Subject(s)
COVID-19 , Disinfectants , Humans , Quaternary Ammonium Compounds/chemistry , Pandemics , Anti-Bacterial Agents
5.
Environ Sci Technol ; 57(4): 1568-1575, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36656107

ABSTRACT

Chemicals have improved the functionality and convenience of industrial and consumer products, but sometimes at the expense of human or ecological health. Existing regulatory systems have proven to be inadequate for assessing and managing the tens of thousands of chemicals in commerce. A different approach is urgently needed to minimize ongoing production, use, and exposures to hazardous chemicals. The premise of the essential-use approach is that chemicals of concern should be used only in cases in which their function in specific products is necessary for health, safety, or the functioning of society and when feasible alternatives are unavailable. To optimize the essential-use approach for broader implementation in the United States and Canada, we recommend that governments and businesses (1) identify chemicals of concern for essentiality assessments based on a broad range of hazard traits, going beyond toxicity; (2) expedite decision-making by avoiding unnecessary assessments and strategically asking up to three questions to determine whether the use of the chemical in the product is essential; (3) apply the essential-use approach as early as possible in the process of developing and assessing chemicals; and (4) engage diverse experts in identifying chemical uses and functions, assessing alternatives, and making essentiality determinations and share such information broadly. If optimized and expanded into regulatory systems in the United States and Canada, other policymaking bodies, and businesses, the essential-use approach can improve chemicals management and shift the market toward safer chemistries that benefit human and ecological health.


Subject(s)
Hazardous Substances , United States , Humans , Risk Assessment , Canada
6.
Environ Toxicol Chem ; 42(3): 620-627, 2023 03.
Article in English | MEDLINE | ID: mdl-36606659

ABSTRACT

While the antimicrobial ingredient triclosan has been widely monitored in the environment, much less is known about the occurrence and toxicity of its major transformation product, methyl triclosan. An improved method was developed and validated to effectively extract and quantify both contaminants in fish tissue and used to characterize concentrations in small prey fish in areas of San Francisco Bay where exposure to triclosan via municipal wastewater discharges was expected to be highest. Concentrations of triclosan (0.44-57 ng/g wet wt, median 1.9 ng/g wet wt) and methyl triclosan (1.1-200 ng/g wet wt, median 36 ng/g wet wt) in fish tissue decreased linearly with concentrations of nitrate in site water, used as indicators of wastewater influence. The total concentrations of triclosan and methyl triclosan measured in prey fish were below available toxicity thresholds for triclosan, but there are few ecotoxicological studies to evaluate impacts of methyl triclosan. Methyl triclosan represented up to 96% of the total concentrations observed. These results emphasize the importance of monitoring contaminant transformation products, which can be present at higher levels than the parent compound. Environ Toxicol Chem 2023;42:620-627. © 2023 SETAC.


Subject(s)
Triclosan , Water Pollutants, Chemical , Animals , Triclosan/toxicity , Wastewater , Estuaries , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fishes
7.
Arch Dis Child Fetal Neonatal Ed ; 108(1): 51-56, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35750468

ABSTRACT

BACKGROUND: Effective lung protective ventilation requires reliable, real-time estimation of lung volume at the bedside. Neonatal clinicians lack a readily available imaging tool for this purpose. OBJECTIVE: To determine the ability of lung ultrasound (LUS) of the dependent region to detect real-time changes in lung volume, identify opening and closing pressures of the lung, and detect pulmonary hysteresis. METHODS: LUS was performed on preterm lambs (n=20) during in vivo mapping of the pressure-volume relationship of the respiratory system using the super-syringe method. Electrical impedance tomography was used to derive regional lung volumes. Images were blindly graded using an expanded scoring system. The scores were compared with total and regional lung volumes, and differences in LUS scores between pressure increments were calculated. RESULTS: Changes in LUS scores correlated moderately with changes in total lung volume (r=0.56, 95% CI 0.47-0.64, p<0.0001) and fairly with right whole (r=0.41, CI 0.30-0.51, p<0.0001), ventral (r=0.39, CI 0.28-0.49, p<0.0001), central (r=0.41, CI 0.31-0.52, p<0.0001) and dorsal (r=0.38, CI 0.27-0.49, p<0.0001) regional lung volumes. The pressure-volume relationship of the lung exhibited hysteresis in all lambs. LUS was able to detect hysteresis in 17 (85%) lambs. The greatest changes in LUS scores occurred at the opening and closing pressures. CONCLUSION: LUS was able to detect large changes in total and regional lung volume in real time and correctly identified opening and closing pressures but lacked the precision to detect small changes in lung volume. Further work is needed to improve precision prior to translation to clinical practice.


Subject(s)
Lung , Thorax , Sheep , Animals , Lung Volume Measurements , Lung/diagnostic imaging , Ultrasonography/methods
8.
BMJ Mil Health ; 169(6): 499-504, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-34880099

ABSTRACT

INTRODUCTION: A rising trend has occurred in the physical and mental health challenges faced by recovering UK service personnel. To support these individuals, bespoke inclusive multiactivity and adventurous training courses (MAC) have been developed. This study investigated the MAC's influence on participants' ability to sustain day-to-day changes that facilitate positive mental health and psychological need satisfaction. METHODS: The 146 UK service personnel who participated in this study attended a five-day MAC 12 months ago. To investigate how the supportive experience influenced participants' lives, quantitative and qualitative data were collected via an online survey. Open-ended questioning and abductive analysis were conducted to understand mechanisms, influential aspects of the course and positive behaviour change. RESULTS: Positive behaviour changes were reported by 74% of the respondents. These changes align with positive psychological well-being (98%). Impactful elements of the course experienced by participants mostly aligned with the three basic psychological needs of autonomy (34%), competence (36%) and relatedness (61%). CONCLUSIONS: Recovery support programmes that encompass health coaching adventurous activities, such as the MAC, can initiate long-term positive behaviour change for recovering military personnel. In this specific context, the concurrence of the self-determination theory concepts that underpin the course delivery and participant outcomes is a powerful endorsement of implementation fidelity.


Subject(s)
Mentoring , Military Personnel , Humans , Health Promotion , Mental Health , United Kingdom
9.
Pediatr Res ; 93(6): 1591-1598, 2023 05.
Article in English | MEDLINE | ID: mdl-36167816

ABSTRACT

BACKGROUND: Lung ultrasound (LUS) may not detect small, dynamic changes in lung volume. Mean greyscale measurement using computer-assisted image analysis (Q-LUSMGV) may improve the precision of these measurements. METHODS: Preterm lambs (n = 40) underwent LUS of the dependent or non-dependent lung during static pressure-volume curve mapping. Total and regional lung volumes were determined using the super-syringe technique and electrical impedance tomography. Q-LUSMGV and gold standard measurements of lung volume were compared in 520 images. RESULTS: Dependent Q-LUSMGV moderately correlated with total lung volume (rho = 0.60, 95% CI 0.51-0.67) and fairly with right whole (rho = 0.39, 0.27-0.49), central (rho = 0.38, 0.27-0.48), ventral (rho = 0.41, 0.31-0.51) and dorsal regional lung volumes (rho = 0.32, 0.21-0.43). Non-dependent Q-LUSMGV moderately correlated with total lung volume (rho = 0.57, 0.48-0.65) and fairly with right whole (rho = 0.43, 0.32-0.52), central (rho = 0.46, 0.35-0.55), ventral (rho = 0.36, 0.25-0.47) and dorsal lung volumes (rho = 0.36, 0.25-0.47). All correlation coefficients were statistically significant. Distinct inflation and deflation limbs, and sonographic pulmonary hysteresis occurred in 95% of lambs. The greatest changes in Q-LUSMGV occurred at the opening and closing pressures. CONCLUSION: Q-LUSMGV detected changes in total and regional lung volume and offers objective quantification of LUS images, and may improve bedside discrimination of real-time changes in lung volume. IMPACT: Lung ultrasound (LUS) offers continuous, radiation-free imaging that may play a role in assessing lung recruitment but may not detect small changes in lung volume. Mean greyscale image analysis using computer-assisted quantitative LUS (Q-LUSMGV) moderately correlated with changes in total and regional lung volume. Q-LUSMGV identified opening and closing pressure and pulmonary hysteresis in 95% of lambs. Computer-assisted image analysis may enhance LUS estimation of lung recruitment at the bedside. Future research should focus on improving precision prior to clinical translation.


Subject(s)
Lung , Tomography, X-Ray Computed , Sheep , Animals , Lung/diagnostic imaging , Lung Volume Measurements/methods , Ultrasonography
10.
Am J Law Med ; 49(2-3): 135-172, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38344782

ABSTRACT

A recent Wall Street Journal investigation revealed that TikTok floods child and adolescent users with videos of rapid weight loss methods, including tips on how to consume less than 300 calories a day and promoting a "corpse bride diet," showing emaciated girls with protruding bones. The investigation involved the creation of a dozen automated accounts registered as 13-year-olds and revealed that TikTok algorithms fed adolescents tens of thousands of weight-loss videos within just a few weeks of joining the platform. Emerging research indicates that these practices extend well beyond TikTok to other social media platforms that engage millions of U.S. youth on a daily basis.Social media algorithms that push extreme content to vulnerable youth are linked to an increase in mental health problems for adolescents, including poor body image, eating disorders, and suicidality. Policy measures must be taken to curb this harmful practice. The Strategic Training Initiative for the Prevention of Eating Disorders (STRIPED), a research program based at the Harvard T.H. Chan School of Public Health and Boston Children's Hospital, has assembled a diverse team of scholars, including experts in public health, neuroscience, health economics, and law with specialization in First Amendment law, to study the harmful effects of social media algorithms, identify the economic incentives that drive social media companies to use them, and develop strategies that can be pursued to regulate social media platforms' use of algorithms. For our study, we have examined a critical mass of public health and neuroscience research demonstrating mental health harms to youth. We have conducted a groundbreaking economic study showing nearly $11 billion in advertising revenue is generated annually by social media platforms through advertisements targeted at users 0 to 17 years old, thus incentivizing platforms to continue their harmful practices. We have also examined legal strategies to address the regulation of social media platforms by conducting reviews of federal and state legal precedent and consulting with stakeholders in business regulation, technology, and federal and state government.While nationally the issue is being scrutinized by Congress and the Federal Trade Commission, quicker and more effective legal strategies that would survive constitutional scrutiny may be implemented by states, such as the Age Appropriate Design Code Act recently adopted in California, which sets standards that online services likely to be accessed by children must follow. Another avenue for regulation may be through states mandating that social media platforms submit to algorithm risk audits conducted by independent third parties and publicly disclose the results. Furthermore, Section 230 of the federal Communications Decency Act, which has long shielded social media platforms from liability for wrongful acts, may be circumvented if it is proven that social media companies share advertising revenues with content providers posting illegal or harmful content.Our research team's public health and economic findings combined with our legal analysis and resulting recommendations, provide innovative and viable policy actions that state lawmakers and attorneys general can take to protect youth from the harms of dangerous social media algorithms.


Subject(s)
Mental Health , Social Media , Child , Female , Adolescent , Humans , Infant, Newborn , Infant , Child, Preschool , Advertising , Policy , Interdisciplinary Studies
11.
Environ Toxicol Chem ; 41(8): 1824-1837, 2022 08.
Article in English | MEDLINE | ID: mdl-35512679

ABSTRACT

The combustion of structures and household materials as well as firefighting during wildfires lead to releases of potentially hazardous chemicals directly into the landscape. Subsequent storm-water runoff events can transport wildfire-related contaminants to downstream receiving waters, where they may pose water quality concerns. To evaluate the environmental hazards of northern California fires on the types of contaminants in storm water discharging to San Francisco Bay and the coastal marine environment, we analyzed storm water collected after the northern California wildfires (October 2017) using a nontargeted analytical (NTA) approach. Liquid chromatography quadrupole time-of-flight mass spectrometric analysis was completed on storm-water samples (n = 20) collected from Napa County (impacted by the Atlas and Nuns fires), the city of Santa Rosa, and Sonoma County (Nuns and Tubbs fires) during storm events that occurred in November 2017 and January 2018. The NTA approach enabled us to establish profiles of contaminants based on peak intensities and chemical categories found in the storm-water samples and to prioritize significant chemicals within these profiles possibly attributed to the wildfire. The results demonstrated the presence of a wide range of contaminants in the storm water, including surfactants, per- and polyfluoroalkyl substances, and chemicals from consumer and personal care products. Homologs of polyethylene glycol were found to be the major contributor to the contaminants, followed by other widely used surfactants. Nonylphenol ethoxylates, typically used as surfactants, were detected and were much higher in samples collected after Storm Event 1 relative to Storm Event 2. The present study provides a comprehensive approach for examining wildfire-impacted storm-water contamination of related contaminants, of which we found many with potential ecological risk. Environ Toxicol Chem 2022;41:1824-1837. © 2022 SETAC.


Subject(s)
Water Pollutants, Chemical , Wildfires , California , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , San Francisco , Surface-Active Agents/analysis , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 813: 152287, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34906577

ABSTRACT

Organophosphate esters (OPEs) and bisphenols are two classes of industrial chemicals that are ubiquitously detected in environmental matrices due to high global production and widespread use, particularly in the manufacture of plastic products. In 2017, water samples collected throughout the highly urbanized San Francisco Bay were analyzed for 22 OPEs and 16 bisphenols using liquid chromatography-electrospray ionization-Q Trap-mass spectrometry. Fifteen of the 22 OPEs were detected, with highest median concentrations in the order TCPP (42 ng/L) > TPhP (9.5 ng/L) > TBOEP (7.6 ng/L) > TnBP (7.5 ng/L) > TEP (6.7 ng/L) > TDCIPP (6.2 ng/L). In contrast, only two of 16 bisphenols, BPA and BPS, were quantified, with concentrations ranging from <0.7-35 ng/L and <1-120 ng/L, respectively. BPA and a few OPEs (EHDPP and TEHP) were primarily present in the particulate phase, while BPS and all other observed OPEs were predominantly found in the dissolved phase. Pairwise correlation analysis revealed several strong, positive correlations among OPEs, and few weak, negative correlations between OPEs and BPA, suggesting differences between the two classes with respect to their sources, pathways, and/or fate in the environment. Concentrations of OPEs and bisphenols observed in this study were generally consistent with reported concentrations in other estuarine and marine settings globally. TDCIPP exceeded existing predicted no-effect concentrations (PNECs) at some sites, and six other compounds (TCrP, IDDPP, EHDPP, TPhP, TBOEP, and BPA) were observed at levels approaching individual compound PNECs (not considering mixture effects), indicating potential risks to Bay biota. These results emphasize the need to control releases of these contaminants in order to protect the ecosystem. Periodic monitoring can be used to maintain vigilance in the face of potential regrettable substitutions.


Subject(s)
Flame Retardants , Bays , China , Ecosystem , Environmental Monitoring , Esters/analysis , Flame Retardants/analysis , Organophosphates/analysis , Risk Assessment , San Francisco
13.
Integr Environ Assess Manag ; 17(6): 1179-1193, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34009690

ABSTRACT

Wildfires can be extremely destructive to communities and ecosystems. However, the full scope of the ecological damage is often hard to assess, in part due to limited information on the types of chemicals introduced to affected landscapes and waterways. The objective of this study was to establish a sampling, analytical, and interpretive framework to effectively identify and monitor contaminants of emerging concern in environmental water samples impacted by wildfire runoff. A nontargeted analysis consisting of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC/TOF-MS) was conducted on stormwater samples from watersheds in the City of Santa Rosa and Sonoma and Napa Counties, USA, after the three most destructive fires during the October 2017 Northern California firestorm. Chemicals potentially related to wildfires were selected from the thousands of chromatographic features detected through a screening method that compared samples from fire-impacted sites versus unburned reference sites. This screening led to high confidence identifications of 76 potentially fire-related compounds. Authentic standards were available for 48 of these analytes, and 46 were confirmed by matching mass spectra and GC × GC retention times. Of these 46 compounds, 37 had known commercial and industrial uses as intermediates or ingredients in plastics, personal care products, pesticides, and as food additives. Nine compounds had no known uses or sources and may be oxidation products resulting from burning of natural or anthropogenic materials. Preliminary examination of potential toxicity associated with the 46 compounds, conducted via online databases and literature review, indicated limited data availability. Regional comparison suggested that more structural damage may yield a greater number of unique, potentially wildfire-related compounds. We recommend further study of post-wildfire runoff using the framework described here, which includes hypothesis-driven site selection and nontargeted analysis, to uncover potentially significant stormwater contaminants not routinely monitored after wildfires and inform risk assessment. Integr Environ Assess Manag 2021;17:1179-1193. © 2021 SETAC.


Subject(s)
Water Pollutants, Chemical , Wildfires , Ecosystem , Environmental Monitoring , San Francisco , Water Pollutants, Chemical/analysis
15.
Environ Sci Process Impacts ; 23(3): 429-445, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33656498

ABSTRACT

A comprehensive, non-targeted analysis of polar organic pollutants using high resolution/accurate mass (HR/AM) mass spectrometry approaches has been applied to water samples from San Francisco (SF) Bay, a major urban estuary on the western coast of the United States, to assess occurrence of emerging contaminants and inform future monitoring and management activities. Polar Organic Chemical Integrative Samplers (POCIS) were deployed selectively to evaluate the influence of three contaminant pathways: urban stormwater runoff (San Leandro Bay), wastewater effluent (Coyote Creek, Lower South Bay), and agricultural runoff (Napa River). Grab samples were collected before and after deployment of the passive samplers to provide a quantitative snapshot of contaminants for comparison. Composite samples of wastewater effluent (24 hours) were also collected from several wastewater dischargers. Samples were analyzed using liquid-chromatography coupled to high resolution mass spectrometry. Resulting data were analyzed using a customized workflow designed for high-fidelity detection, prioritization, identification, and semi-quantitation of detected molecular features. Approximately 6350 compounds were detected in the combined data set, with 424 of those compounds tentatively identified through high quality spectral library match scores. Compounds identified included ethoxylated surfactants, pesticide and pharmaceutical transformation products, polymer additives, and rubber vulcanization agents. Compounds identified in samples were reflective of the apparent sources and pathways of organic pollutant inputs, with stormwater-influenced samples dominated by additive chemicals likely derived from plastics and vehicle tires, as well as ethoxylated surfactants.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Environmental Monitoring , Estuaries , Rivers , Water Pollutants, Chemical/analysis
16.
J Hazard Mater ; 409: 124770, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33450512

ABSTRACT

Microplastics are ubiquitous and persistent contaminants in the ocean and a pervasive and preventable threat to the health of marine ecosystems. Microplastics come in a wide variety of shapes, sizes, and plastic types, each with unique physical and chemical properties and toxicological impacts. Understanding the magnitude of the microplastic problem and determining the highest priorities for mitigation require accurate measures of microplastic occurrence in the environment and identification of likely sources. The field of microplastic pollution is in its infancy, and there are not yet widely accepted standards for sample collection, laboratory analyses, quality assurance/quality control (QA/QC), or reporting of microplastics in environmental samples. Based on a comprehensive assessment of microplastics in San Francisco Bay water, sediment, fish, bivalves, stormwater, and wastewater effluent, we developed recommended best practices for collecting, analyzing, and reporting microplastics in environmental media. We recommend factors to consider in microplastic study design, particularly in regard to site selection and sampling methods. We also highlight the need for standard QA/QC practices such as collection of field and laboratory blanks, use of methods beyond microscopy to identify particle composition, and standardized reporting practices, including suggested vocabulary for particle classification.

18.
Integr Environ Assess Manag ; 17(1): 282-291, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32770796

ABSTRACT

To inform mitigation strategies and understand how microplastics affect wildlife, research is focused on understanding the sources, pathways, and occurrence of microplastics in the environment and in wildlife. Microplastics research entails counting and characterizing microplastics in nature, which is a labor-intensive process, particularly given the range of particle sizes and morphologies present within this diverse class of contaminants. Thus, it is crucial to determine appropriate sampling methods that best capture the types and quantities of microplastics relevant to inform the questions and objectives at hand. It is also critical to follow protocols with strict quality assurance and quality control (QA/QC) measures so that results reflect accurate estimates of microplastic contamination. Here, we assess different sampling procedures and QA/QC strategies to inform best practices for future environmental monitoring and assessments of exposure. We compare microplastic abundance and characteristics in surface-water samples collected using different methods (i.e., manta and bulk water) at the same sites, as well as duplicate samples for each method taken at the same site and approximate time. Samples were collected from 9 sampling sites within San Francisco Bay, California, USA, using 3 different sampling methods: 1) manta trawl (manta), 2) 1-L grab (grab), and 3) 10-L bulk water filtered in situ (pump). Bulk water sampling methods (both grab and pump) captured more microplastics within the smaller size range (<335 µm), most of which were fibers. Manta samples captured a greater diversity of morphologies but underestimated smaller-sized particles. Inspection of pump samples revealed high numbers of particles from procedural contamination, stressing the need for robust QA/QC, including sampling and analyzing laboratory blanks, field blanks, and duplicates. Choosing the appropriate sampling method, combined with rigorous, standardized QA/QC practices, is essential for the future of microplastics research in marine and freshwater ecosystems. Integr Environ Assess Manag 2021;17:282-291. © 2020 SETAC.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Risk Assessment , San Francisco , Water Pollutants, Chemical/analysis
19.
Science ; 371(6525): 185-189, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33273063

ABSTRACT

In U.S. Pacific Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-affected creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms per liter) at toxic concentrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues.


Subject(s)
Antioxidants/toxicity , Benzoquinones/toxicity , Environmental Exposure , Oncorhynchus kisutch/physiology , Phenylenediamines/toxicity , Rubber/toxicity , Animals , Northwestern United States , Rubber/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...