Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220194, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37866382

ABSTRACT

Atlantic multidecadal variability (AMV) has long been thought to be an expression of low-frequency variability in the Atlantic Meridional Overturning Circulation (AMOC). However, alternative hypotheses have been forwarded, including that AMV is primarily externally forced. Here, we review the current state of play by assessing historical simulations made for the sixth coupled model intercomparison project (CMIP6). Overall, the importance of external forcing is sensitive to the type of AMV index used, due to the importance of globally coherent externally forced signals in the models. There are also significant contrasts between the processes that drive internally and externally forced AMV, but these processes can be isolated by exploring the multivariate expression of AMV. Specifically, internal variability in CMIP6 models is consistent with an important role of ocean circulation and AMOC and the externally forced AMV is largely a surface-flux forced mechanism with little role for the ocean. Overall, the internal multivariate fingerprint of AMV is similar to the observed, but the externally forced fingerprint appears inconsistent with observations. Therefore, climate models still suggest a key role for ocean dynamics, and specifically AMOC, in observed AMV. Nevertheless, models remain deficient in a number of areas, and a stronger role for externally forced dynamical changes cannot be ruled out. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

2.
Nat Commun ; 13(1): 1148, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241666

ABSTRACT

The Eurasian subtropical westerly jet (ESWJ) is a major feature of the summertime atmospheric circulation in the Northern Hemisphere. Here, we demonstrate a robust weakening trend in the summer ESWJ over the last four decades, linked to significant impacts on extreme weather. Analysis of climate model simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) suggests that anthropogenic aerosols were likely the primary driver of the weakening ESWJ. Warming over mid-high latitudes due to aerosol reductions in Europe, and cooling in the tropics and subtropics due to aerosol increases over South and East Asia acted to reduce the meridional temperature gradient at the surface and in the lower and middle troposphere, leading to reduced vertical shear of the zonal wind and a weaker ESWJ in the upper troposphere. If, as expected, Asian anthropogenic aerosol precursor emissions decline in future, our results imply a renewed strengthening of the summer ESWJ.


Subject(s)
Wind , Aerosols/analysis , Europe , Seasons , Temperature
3.
J Adv Model Earth Syst ; 12(9): e2019MS002004, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33042388

ABSTRACT

We describe the approach taken to develop the United Kingdom's first community Earth system model, UKESM1. This is a joint effort involving the Met Office and the Natural Environment Research Council (NERC), representing the U.K. academic community. We document our model development procedure and the subsequent U.K. submission to CMIP6, based on a traceable hierarchy of coupled physical and Earth system models. UKESM1 builds on the well-established, world-leading HadGEM models of the physical climate system and incorporates cutting-edge new representations of aerosols, atmospheric chemistry, terrestrial carbon, and nitrogen cycles and an advanced model of ocean biogeochemistry. A high-level metric of overall performance shows that both models, HadGEM3-GC3.1 and UKESM1, perform better than most other CMIP6 models so far submitted for a broad range of variables. We point to much more extensive evaluation performed in other papers in this special issue. The merits of not using any forced climate change simulations within our model development process are discussed. First results from HadGEM3-GC3.1 and UKESM1 include the emergent climate sensitivity (5.5 and 5.4 K, respectively) which is high relative to the current range of CMIP5 models. The role of cloud microphysics and cloud-aerosol interactions in driving the climate sensitivity, and the systematic approach taken to understand this role, is highlighted in other papers in this special issue. We place our findings within the broader modeling landscape indicating how our understanding of key processes driving higher sensitivity in the two U.K. models seems to align with results from a number of other CMIP6 models.

5.
Proc Natl Acad Sci U S A ; 115(1): 59-63, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29255052

ABSTRACT

Forecasts of summer weather patterns months in advance would be of great value for a wide range of applications. However, seasonal dynamical model forecasts for European summers have very little skill, particularly for rainfall. It has not been clear whether this low skill reflects inherent unpredictability of summer weather or, alternatively, is a consequence of weaknesses in current forecast systems. Here we analyze atmosphere and ocean observations and identify evidence that a specific pattern of summertime atmospheric circulation--the summer East Atlantic (SEA) pattern--is predictable from the previous spring. An index of North Atlantic sea-surface temperatures in March-April can predict the SEA pattern in July-August with a cross-validated correlation skill above 0.6. Our analyses show that the sea-surface temperatures influence atmospheric circulation and the position of the jet stream over the North Atlantic. The SEA pattern has a particularly strong influence on rainfall in the British Isles, which we find can also be predicted months ahead with a significant skill of 0.56. Our results have immediate application to empirical forecasts of summer rainfall for the United Kingdom, Ireland, and northern France and also suggest that current dynamical model forecast systems have large potential for improvement.

6.
Science ; 352(6293): 1527, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27339976

ABSTRACT

Clement et al (Reports, 16 October 2015, p. 320) claim that the Atlantic Multidecadal Oscillation (AMO) is a thermodynamic response of the ocean mixed layer to stochastic atmospheric forcing and that ocean circulation changes have no role in causing the AMO. These claims are not justified. We show that ocean dynamics play a central role in the AMO.

7.
Philos Trans A Math Phys Eng Sci ; 373(2054)2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26438282

ABSTRACT

The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.

9.
Philos Trans A Math Phys Eng Sci ; 367(1890): 913-6, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19087941

ABSTRACT

In this paper, the predictability of climate arising from ocean heat content (OHC) anomalies is investigated in the HadCM3 coupled atmosphere-ocean model. An ensemble of simulations of the twentieth century are used to provide initial conditions for a case study. The case study consists of two ensembles started from initial conditions with large differences in regional OHC in the North Atlantic, the Southern Ocean and parts of the West Pacific. Surface temperatures and precipitation are on average not predictable beyond seasonal time scales, but for certain initial conditions there may be longer predictability. It is shown that, for the case study examined here, some aspects of tropical precipitation, European surface temperatures and North Atlantic sea-level pressure are potentially predictable 2 years ahead. Predictability also exists in the other case studies, but the climate variables and regions, which are potentially predictable, differ. This work was done as part of the Grid for Coupled Ensemble Prediction (GCEP) eScience project.


Subject(s)
Atmosphere , Climate , Ecology/methods , Meteorology/methods , Models, Theoretical , Software , Weather , Computer Simulation , Ecology/trends , Environmental Monitoring/methods , Internet , Oceans and Seas
10.
Philos Trans A Math Phys Eng Sci ; 367(1890): 925-37, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19087944

ABSTRACT

Decadal prediction uses climate models forced by changing greenhouse gases, as in the International Panel for Climate Change, but unlike longer range predictions they also require initialization with observations of the current climate. In particular, the upper-ocean heat content and circulation have a critical influence. Decadal prediction is still in its infancy and there is an urgent need to understand the important processes that determine predictability on these timescales. We have taken the first Hadley Centre Decadal Prediction System (DePreSys) and implemented it on several NERC institute compute clusters in order to study a wider range of initial condition impacts on decadal forecasting, eventually including the state of the land and cryosphere. The eScience methods are used to manage submission and output from the many ensemble model runs required to assess predictive skill. Early results suggest initial condition skill may extend for several years, even over land areas, but this depends sensitively on the definition used to measure skill, and alternatives are presented. The Grid for Coupled Ensemble Prediction (GCEP) system will allow the UK academic community to contribute to international experiments being planned to explore decadal climate predictability.


Subject(s)
Climate , Ecology/methods , Forecasting , Meteorology/methods , Models, Theoretical , Weather , Computer Simulation , Ecology/trends , Environmental Monitoring/methods , Internet , Software
11.
Nature ; 450(7166): 27, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17972860
12.
Science ; 309(5731): 115-8, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15994552

ABSTRACT

Recent extreme events such as the devastating 2003 European summer heat wave raise important questions about the possible causes of any underlying trends, or low-frequency variations, in regional climates. Here, we present new evidence that basin-scale changes in the Atlantic Ocean, probably related to the thermohaline circulation, have been an important driver of multidecadal variations in the summertime climate of both North America and western Europe. Our findings advance understanding of past climate changes and also have implications for decadal climate predictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...