Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Meteorit Planet Sci ; 52(5): 949-978, 2017 May.
Article in English | MEDLINE | ID: mdl-30498327

ABSTRACT

Miller Range (MIL) 090340 and MIL 090206 are olivine-rich achondrites originally classified as ureilites. We investigate their petrography, mineral compositions, olivine Cr valences, equilibration temperatures, and (for MIL 090340) oxygen isotope compositions, and compare them with ureilites and other olivine-rich achondrites. We conclude that they are brachinite-like achondrites that provide new insights into the petrogenesis of brachinite clan meteorites. MIL 090340,6 has a granoblastic texture and consists of ~97 modal % by area olivine (Fo = molar Mg/[Mg+Fe] = 71.3±0.6). It also contains minor to trace augite, chromite, chlorapatite, orthopyroxene, metal, troilite, and terrestrial Fe-oxides. Approximately 80% by area of MIL 090206,5 has a granoblastic texture of olivine (Fo 72.3±0.1) plus minor augite and chromite, similar to MIL 090340 but also containing minor plagioclase. The rest of the section consists of a single crystal of orthopyroxene (~11×3 mm), poikilitically enclosing rounded grains of olivine (Fo = 76.1±0.6), augite, chromite, metal and sulfide. Equilibration temperatures for MIL 090340 and MIL 090206, calculated from olivine-spinel, olivine-augite, and two-pyroxene thermometry range from ~800-930°C. In both samples, symplectic intergrowths of Ca-poor orthopyroxene + opaque phases (Fe-oxides, sulfide, metal) occur as rims on and veins/patches within olivine. Before terrestrial weathering, the opaques were probably mostly sulfide, with minor metal. All petrologic properties of MIL 090340 and MIL 090206 are consistent with those of brachinite clan meteorites, and largely distinct from those of ureilites. Oxygen isotope compositions of olivine in MIL 090340 (δ18O = 5.08±0.30‰, δ17O = 2.44±0.21‰, and Δ17O = -0.20±0.12‰) are also within the range of brachinite clan meteorites, and well distinguished from ureilites. Olivine Cr valences in MIL 090340 and the granoblastic area of MIL 090206 are 2.57±0.06 and 2.59±0.07, respectively, similar to those of three brachinites also analyzed here (Brachina, Hughes 026, Nova 003). They are higher than those of olivine in ureilites, even those containing chromite. The valence systematics of MIL 090340, MIL 090206, and the three analyzed brachinites (lower Fo = more oxidized Cr) are consistent with previous evidence that brachinite-like parent bodies were inherently more oxidized than the ureilite parent body. The symplectic orthopyroxene + sulfide/metal assemblages in MIL 090340, MIL 090206, and many brachinite clan meteorites have superficial similarities to characteristic "reduction rims" in ureilites. However, they differ significantly in detail. They likely formed by reaction of olivine with S-rich fluids, with only minor reduction. MIL 090340 and the granoblastic area of MIL 090206 are similar in modal mineralogy and texture to most brachinites, but have higher Fo values typical of brachinite-like achondrites. The poiklitic pyroxene area of MIL 090206 is more typical of brachinite-like achondrites. The majority of their properties suggest that MIL 090340 and MIL 090206 are residues of low-degree partial melting. The poikilitic area of MIL 090206 could be a result of limited melt migration, with trapping and recrystallization of a small volume of melt in the residual matrix. These two samples are so similar in mineral compositions, Cr valence, and cosmic ray exposure ages that they could be derived from the same lithologic unit on a common parent body.

2.
J Environ Qual ; 46(6): 1158-1165, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293842

ABSTRACT

X-ray microprobes (XRM) coupled with high-brightness synchrotron X-ray facilities are powerful tools for environmental biogeochemistry research. One such instrument, the XRM at the Geo Soil Enviro Center for Advanced Radiation Sources Sector 13 at the Advanced Photon Source (APS; Argonne National Laboratory, Lemont, IL) was recently improved as part of a canted undulator geometry upgrade of the insertion device port, effectively doubling the available undulator beam time and extending the operating energy of the branch supporting the XRM down to the sulfur K edge (2.3 keV). Capabilities include rapid, high-resolution, elemental imaging including fluorescence microtomography, microscale X-ray absorption fine structure spectroscopy including sulfur K edge capability, and microscale X-ray diffraction. These capabilities are advantageous for (i) two-dimensional elemental mapping of relatively large samples at high resolution, with the dwell times typically limited only by the count times needed to obtain usable counting statistics for low concentration elements, (ii) three-dimensional imaging of internal elemental distributions in fragile hydrated specimens, such as biological tissues, avoiding the need for physical slicing, (iii) spatially resolved speciation determinations of contaminants in environmental materials, and (iv) identification of contaminant host phases. In this paper, we describe the XRM instrumentation, techniques, applications demonstrating these capabilities, and prospects for further improvements associated with the proposed upgrade of the APS.


Subject(s)
Environmental Monitoring , Synchrotrons , Soil , X-Ray Absorption Spectroscopy , X-Ray Diffraction
3.
Sci Total Environ ; 575: 941-955, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27743654

ABSTRACT

Pollutants in acid mine drainage (AMD) are usually sequestered in neoformed nano- and micro-scale particles (nNP) through precipitation, co-precipitation, and sorption. Subsequent biogeochemical processes may control nNP stability and thus long-term contaminant immobilization. Mineralogical, chemical, and microbiological data collected from sediments accumulated over a six-year period in a coal-mine AMD treatment system were used to identify the pathways of contaminant dynamics. We present evidence that detrital nano- and micron-scale particles (dNP), composed mostly of clay minerals originating from the partial weathering of coal-mine waste, mediated biogeochemical processes that catalyzed AMD contaminant (1) immobilization by facilitating heterogeneous nucleation and growth of nNP in oxic zones, and (2) remobilization by promoting phase transformation and reductive dissolution of nNP in anoxic zones. We found that dNP were relatively stable under acidic conditions and estimated a dNP content of ~0.1g/L in the influent AMD. In the AMD sediments, the initial nNP precipitates were schwertmannite and poorly crystalline goethite, which transformed to well-crystallized goethite, the primary nNP repository. Subsequent reductive dissolution of nNP resulted in the remobilization of up to 98% of S and 95% of Fe accompanied by the formation of a compact dNP layer. Effective treatment of pollutants could be enhanced by better understanding the complex, dynamic role dNP play in mediating biogeochemical processes and contaminant dynamics at coal-mine impacted sites.

4.
Dalton Trans ; 45(47): 18892-18899, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27722670

ABSTRACT

Heating a mixture of uranyl(vi) nitrate and tantalum(v) oxide in the molar ratio of 2 : 3 to 1400 °C resulted in the formation of a new compound, UTa3O10. The honey colored to yellow brown crystals of UTa3O10 crystallize in an orthorhombic structure with the space group Fddd (no. 70), lattice parameters a = 7.3947(1), b = 12.7599(2), c = 15.8156(2) Å, and Z = 8. Vertex sharing [TaO6]7- octahedra of two crystallographically distinct Ta cations form a three dimensional tantalate framework. Within this framework, six membered rings of [TaO6]7- octahedra are formed within the (001) plane. The center of these rings is occupied by the uranyl cations [UO2]+, with an oxidation state of +5 for uranium. The pentavalence of U and Ta was confirmed by X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy. The enthalpy of formation of UTa3O10 from Ta2O5, ß-U3O7, and U3O8 has been determined to be 13.1 ± 18.1 kJ mol-1 using high temperature oxide melt solution calorimetry with sodium molybdate as the solvent at 700 °C. The close to zero enthalpy of formation of UTa3O10 can be explained by closely balanced structural stabilizing and destabilizing factors, which may also apply to other UM3O10 compounds.

5.
PLoS One ; 11(7): e0159200, 2016.
Article in English | MEDLINE | ID: mdl-27438605

ABSTRACT

Supereruptions catastrophically eject 100s-1000s of km3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 µm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profiles along rim-interior contacts in quartz at resolutions of 1-5 µm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 µm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10-8 and 10-10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of µm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.


Subject(s)
Geological Phenomena , Crystallization , Diffusion , Electrons , Luminescent Measurements , Quartz/chemistry , Time Factors , Titanium/chemistry
6.
Dalton Trans ; 45(11): 4622-32, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26854913

ABSTRACT

Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO4, CrUO4 and FeUO4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and (57)Fe-Mössbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U(5+) has been solidly confirmed in CrUO4 and FeUO4, which are thermodynamically stable compounds, and the origin and stability of U(5+) in the system was elaborated by DFT. The structural and thermodynamic behaviour of U(5+) elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal.

7.
Inorg Chem ; 54(8): 4156-66, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25853274

ABSTRACT

The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y(3+) = Ca(2+) + M(4+), where M(4+) = Ce(4+) or Th(4+). Single-phase garnets Y3-xCa0.5xM0.5xFe5O12 (x = 0.1-0.7) were synthesized by the citrate-nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and (57)Fe-Mössbauer spectroscopy indicated that M(4+) and Ca(2+) cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe(3+) are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

8.
Nat Commun ; 5: 3241, 2014.
Article in English | MEDLINE | ID: mdl-24476847

ABSTRACT

A defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates viscosity and affects compressibility. While viscosity of depolymerized silicate melts increases with pressure consistent with the free-volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3-5 GPa, above which it turns over to normal (positive) pressure dependence. Here we show that the viscosity turnover in polymerized liquids corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in high compressibility, continual breakup of tetrahedral connectivity and viscosity decrease with increasing pressure. Above the turnover pressure, silicon and aluminium coordination increases to allow further packing, with increasing viscosity and density. These structural responses prescribe the distribution of melt viscosity and density with depth and play an important role in magma transport in terrestrial planetary interiors.

9.
J Phys Condens Matter ; 26(3): 035104, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24285424

ABSTRACT

The structural behavior of GeO2 glass has been investigated up to 64 GPa using results from x-ray absorption spectroscopy in a diamond anvil cell combined with previously reported density measurements. The difference between the nearest Ge-O distances of glassy and rutile-type GeO2 disappears at the Ge-O distance maximum at 20 GPa, indicating completion of the tetrahedral-octahedral transition in GeO2 glass. The mean-square displacement σ(2) of the Ge-O distance in the first Ge-O shell increases progressively to a maximum at 10 GPa, followed by a substantial reduction at higher pressures. The octahedral glass is, as expected, less dense and has a higher compressibility than the corresponding crystalline phase, but the differences in Ge-O distance and density between the glass and the crystals are gradually eliminated over the 20-40 GPa pressure range. Above 40 GPa, GeO2 forms a dense octahedral glass with a compressibility similar to that of the corresponding crystalline phase (α-PbO2 type). The EXAFS and XANES spectra show evidence for subtle changes in the dense glass continuing to occur at these high pressures. The Ge-O bond distance shows little change between 45-64 GPa, and this may reflect a balance between bond shortening and a gradual coordination number increase with compression. The density of the glass is similar to that of the α-PbO2-type phase, but the Ge-O distance is longer and is close to that in the higher-coordination pyrite-type phase which is stable above ∼60 GPa. The density data provide evidence for a possible discontinuity and change in compressibility at 40-45 GPa, but there are no major changes in the corresponding EXAFS spectra. A pyrite-type local structural model for the glass can provide a reasonable fitting to the XAFS spectra at 64 GPa.

10.
PLoS One ; 7(5): e37492, 2012.
Article in English | MEDLINE | ID: mdl-22666359

ABSTRACT

Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.


Subject(s)
Quartz/chemistry , Volcanic Eruptions , Crystallization , Diffusion , Hot Temperature , Thermodynamics , Time Factors , Transition Temperature
11.
Br J Health Psychol ; 17(2): 294-313, 2012 May.
Article in English | MEDLINE | ID: mdl-22107338

ABSTRACT

OBJECTIVES: When a health problem is perceived as having a genetic cause, this appears to increase the perceived effectiveness of pharmacological treatments and reduce perceived effectiveness of non-pharmacological treatments. Potential mediators of this effect include causal attributions, perceived severity, and perceived control over the health problem. This study aimed to use experimental methods to establish which beliefs mediate the effect of genetic causal information on perceived effectiveness of treatments. DESIGN: A 4(cause: environmental, family history, genetic test, family history & genetic test)×2(severity: higher or low) between-subjects design using vignettes about heart disease risk, obesity or depression. METHODS: A total of 647 adults, randomly assigned to read one of the experimental vignettes, were interviewed. Key outcomes were perceived effectiveness of medication and of non-pharmacological treatments. Potential mediators of perceived severity, perceived controllability, and causal attributions were also assessed. RESULTS: For heart disease risk, genetic causes reduced perceived effectiveness of non-pharmacological treatments (an effect mediated by causal attributions and perceived control) but did not influence perceived medication effectiveness. For obesity, neither severity nor cause influenced the perceived effectiveness of either treatment. For depression, genetic causes only increased perceived effectiveness of medication for more severe depression, an effect mediated by perceived control. CONCLUSIONS: The impact of genetic causal information on perceived effectiveness of treatments varies with type of health problem. When genetic causal information influences perceived treatment effectiveness, it does so by altering causal attributions and perceived controllability. However, these effects are small and unlikely to translate into clinically meaningful differences in health-enhancing behaviours.


Subject(s)
Causality , Drug Therapy/psychology , Genetic Predisposition to Disease/psychology , Genetic Testing , Perception , Treatment Outcome , Adult , Depression/genetics , Depression/therapy , Female , Heart Diseases/genetics , Heart Diseases/therapy , Humans , Male , Middle Aged , Obesity/genetics , Obesity/therapy , Risk Factors
12.
Proc Natl Acad Sci U S A ; 108(42): 17281-5, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21969537

ABSTRACT

Phases of the iron-oxygen binary system are significant to most scientific disciplines, directly affecting planetary evolution, life, and technology. Iron oxides have unique electronic properties and strongly interact with the environment, particularly through redox reactions. The iron-oxygen phase diagram therefore has been among the most thoroughly investigated, yet it still holds striking findings. Here, we report the discovery of an iron oxide with formula Fe(4)O(5), synthesized at high pressure and temperature. The previously undescribed phase, stable from 5 to at least 30 GPa, is recoverable to ambient conditions. First-principles calculations confirm that the iron oxide here described is energetically more stable than FeO + Fe(3)O(4) at pressure greater than 10 GPa. The calculated lattice constants, equation of states, and atomic coordinates are in excellent agreement with experimental data, confirming the synthesis of Fe(4)O(5). Given the conditions of stability and its composition, Fe(4)O(5) is a plausible accessory mineral of the Earth's upper mantle. The phase has strong ferrimagnetic character comparable to magnetite. The ability to synthesize the material at accessible conditions and recover it at ambient conditions, along with its physical properties, suggests a potential interest in Fe(4)O(5) for technological applications.

13.
Sci Total Environ ; 408(12): 2590-9, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20067849

ABSTRACT

Arsenic is naturally associated with gold mineralisation and elevated in some soils and mine waste around historical gold mining activity in Victoria, Australia. To explore uptake, arsenic concentrations in children's toenail clippings and household soils were measured, and the microdistribution and speciation of arsenic in situ in toenail clipping thin sections investigated using synchrotron-based X-ray microprobe techniques. The ability to differentiate exogenous arsenic was explored by investigating surface contamination on cleaned clippings using depth profiling, and direct diffusion of arsenic into incubated clippings. Total arsenic concentrations ranged from 0.15 to 2.1 microg/g (n=29) in clipping samples and from 3.3 to 130 microg/g (n=22) in household soils, with significant correlation between transformed arsenic concentrations (Pearson's r=0.42, P=0.023) when household soil was treated as independent. In clipping thin sections (n=2), X-ray fluorescence (XRF) mapping showed discrete layering of arsenic consistent with nail structure, and irregular arsenic incorporation along the nail growth axis. Arsenic concentrations were heterogeneous at 10x10 microm microprobe spot locations investigated (<0.1 to 13.3 microg/g). X-ray absorption near-edge structure (XANES) spectra suggested the presence of two distinct arsenic species: a lower oxidation state species, possibly with mixed sulphur and methyl coordination (denoted As(approximately III)(-S, -CH3)); and a higher oxidation state species (denoted As(approximately V)(-O)). Depth profiling suggested that surface contamination was unlikely (n=4), and XRF and XANES analyses of thin sections of clippings incubated in dry or wet mine waste, or untreated, suggested direct diffusion of arsenic occurred under moist conditions. These findings suggest that arsenic in soil contributes to some systemic absorption associated with periodic exposures among children resident in areas of historic gold mining activity in Victoria, Australia. Future studies are required to ascertain if adverse health effects are associated with current levels of arsenic uptake.


Subject(s)
Arsenic/metabolism , Environmental Exposure/analysis , Mining , Nails/metabolism , Soil Pollutants/metabolism , Toes , Adolescent , Arsenic/analysis , Arsenic/chemistry , Child , Child, Preschool , Environmental Monitoring , Female , Gold , Humans , Male , Soil/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry
14.
Rev Sci Instrum ; 80(7): 073908, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19655966

ABSTRACT

We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within +/-3 degrees relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.


Subject(s)
Diamond , Pressure , Spectrum Analysis/instrumentation , X-Rays , Absorption , Algorithms , Germanium/chemistry , Glass/chemistry , Reproducibility of Results
15.
Rev Sci Instrum ; 78(10): 103905, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17979433

ABSTRACT

We describe an x-ray absorption method for in situ density measurement of non-crystalline materials in the diamond anvil cell using a monochromatic synchrotron x-ray microbeam. Sample thickness, which is indispensable in the absorption method, can be determined precisely by extrapolating the thickness profile of the gasket obtained by x-ray absorption and diffraction measurements. Diamond deformation across the sample chamber becomes noticeable at high pressures above 10 GPa, which can be monitored with a precision better than 1%, as demonstrated by measurements on crystalline Ag. We have applied the developed method to measure densities of the classic network-forming GeO(2) glass in octahedral form at pressures up to 56 GPa. The fit to the pressure-volume data with the Birch-Murnaghan equation from 13 to 56 GPa gives parameters of V(0)=23.2+/-0.4 cm(3)mol and K=35.8+/-3.0 GPa, assuming that K(')=4. This method could be applicable for in situ determination of the density of liquids and other noncrystalline materials using a diamond anvil cell up to ultrahigh pressures.


Subject(s)
Absorptiometry, Photon/instrumentation , Diamond/chemistry , Materials Testing/instrumentation , Specimen Handling/instrumentation , X-Ray Diffraction/instrumentation , Absorptiometry, Photon/methods , Crystallography , Equipment Design , Equipment Failure Analysis , Materials Testing/methods , Pressure , Reproducibility of Results , Sensitivity and Specificity , Specimen Handling/methods , X-Ray Diffraction/methods
17.
Environ Sci Technol ; 40(11): 3508-14, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16786687

ABSTRACT

Plutonium oxidation state distribution on Yucca Mountain tuff and synthetic pyrolusite (beta-MnO2) suspensions was measured using synchrotron X-ray micro-spectroscopy and microimaging techniques as well as ultrafiltration/solventextraction techniques. Plutonium sorbed to the tuff was preferentially associated with manganese oxides. For both Yucca Mountain tuff and synthetic pyrolusite, Pu(IV) or Pu(V) was initially oxidized to more mobile Pu(V/VI), but over time, the less mobile Pu(IV) became the predominant oxidation state of the sorbed Pu. The observed stability of Pu(IV) on oxidizing surfaces (e.g., pyrolusite), is proposed to be due to the formation of a stable hydrolyzed Pu(IV) surface species. These findings have important implications in estimating the risk associated with the geological burial of radiological waste in areas containing Mn-bearing minerals, such as at the Yucca Mountain or the Hanford Sites, because plutonium will be predominantly in a much less mobile oxidation state (i.e., Pu(IV)) than previously suggested (i.e., Pu(V/VI).


Subject(s)
Manganese Compounds/analysis , Minerals/analysis , Oxides/analysis , Plutonium/analysis , Hydrogen-Ion Concentration , Manganese Compounds/chemistry , Minerals/chemistry , Nevada , Oxidation-Reduction , Oxides/chemistry , Plutonium/chemistry , Radioactive Waste/analysis , Soil Pollutants/analysis , Spectrum Analysis/methods , Time Factors
18.
Environ Sci Technol ; 39(16): 6162-9, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16173577

ABSTRACT

Nuclear weapons and fuel production have left many soils and sediments contaminated with toxic levels of uranium (U). Although previous short-term experiments on microbially mediated U(VI) reduction have supported the prospect of immobilizing the toxic metal through formation of insoluble U(IV) minerals, our longer-term (17 months) laboratory study showed that microbial reduction of U can be transient, even under sustained reducing conditions. Uranium was reduced during the first 80 days, but later (100-500 days) reoxidized and solubilized, even though a microbial community capable of reducing U(VI) was sustained. Microbial respiration caused increases in (bi)-carbonate concentrations and formation of very stable uranyl carbonate complexes, thereby increasing the thermodynamic favorability of U(IV) oxidation. We propose that kinetic limitations including restricted mass transfer allowed Fe-(III) and possibly Mn(IV) to persist as terminal electron acceptors (TEAs) for U reoxidation. These results show that in-situ U remediation by organic carbon-based reductive precipitation can be problematic in sediments and groundwaters with neutral to alkaline pH, where uranyl carbonates are most stable.


Subject(s)
Soil Pollutants, Radioactive/metabolism , Uranium/chemistry , Uranium/metabolism , Biodegradation, Environmental , Chemical Precipitation , Hydrogen-Ion Concentration , Iron/chemistry , Kinetics , Oxidation-Reduction , Soil Microbiology , Solubility
19.
J Synchrotron Radiat ; 12(Pt 5): 560-5, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16120978

ABSTRACT

The grain-size distribution and the character of individual grain boundaries in microcrystalline networks play a significant role in material properties, such as melting temperature, diffusion coefficients, resistivity, optical absorption, elastic constants, phase transformation pressure, and so on. In this study, the grain size of NaCl, SiO2 and FeC3 is controlled in situ at high pressures over the entire range of the length scale of crystallinity: single-crystal, micro-/nanocrystalline and amorphous materials within a volume commensurate with the size of the probing X-ray beam. The structure refinement of high-pressure samples from X-ray diffraction data can be significantly improved by controlling grain size by selecting the structure of starting materials and following certain high pressure-temperature-time paths.

20.
J Synchrotron Radiat ; 12(Pt 5): 642-9, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16120989

ABSTRACT

An overview of facilities for high-pressure research with the diamond anvil cell (DAC) at the GeoSoilEnviroCARS (GSECARS) sector at the Advanced Photon Source (Argonne, Illinois) is presented. There are three operational experimental stations (13-ID-C, 13-ID-D and 13-BM-D) where DAC instrumentation is installed for various types of experiments at high pressure and extreme temperature conditions. A fourth station (13-BM-C) is under construction and will be operational in 2006. While most X-ray diffraction experiments have been undertaken with powder samples so far, there is a growing demand for single-crystal diffraction (SCD) at high pressure. As one of the principal components at GSECARS, SCD is currently under rapid development. Other relevant techniques have also been developed for obtaining complementary information from powder or single-crystal samples at high pressure. For example, an on-line Brillouin system is installed and operational at 13-BM-D for acoustic velocity and single-crystal elasticity determinations. In addition, various X-ray spectroscopy techniques (e.g. X-ray emission and X-ray Raman) are employed for measuring electronic and magnetic properties. Future developments are discussed with the DAC program at GSECARS.

SELECTION OF CITATIONS
SEARCH DETAIL
...