Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nat Commun ; 15(1): 4112, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750016

ABSTRACT

Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Mink , Orthomyxoviridae Infections , Animals , Mink/virology , Ferrets/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Risk Assessment , Humans , Mutation , Viral Proteins/genetics , Viral Proteins/metabolism , Female , Disease Outbreaks/veterinary , Male , Influenza, Human/virology , Influenza, Human/transmission
2.
Microbiol Spectr ; 12(3): e0499822, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38334387

ABSTRACT

Multiple vaccines have been developed and licensed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). While these vaccines reduce disease severity, they do not prevent infection. To prevent infection and limit transmission, vaccines must be developed that induce immunity in the respiratory tract. Therefore, we performed proof-of-principle studies with an intranasal nanoparticle vaccine against SARS-CoV-2. The vaccine candidate consisted of the self-assembling 60-subunit I3-01 protein scaffold covalently decorated with the SARS-CoV-2 receptor-binding domain (RBD) using the SpyCatcher-SpyTag system. We verified the intended antigen display features by reconstructing the I3-01 scaffold to 3.4 A using cryogenicelectron microscopy. Using this RBD-grafted SpyCage scaffold (RBD + SpyCage), we performed two intranasal vaccination studies in the "gold-standard" pre-clinical Syrian hamster model. The initial study focused on assessing the immunogenicity of RBD + SpyCage combined with the LTA1 intranasal adjuvant. These studies showed RBD + SpyCage vaccination induced an antibody response that promoted viral clearance but did not prevent infection. Inclusion of the LTA1 adjuvant enhanced the magnitude of the antibody response but did not enhance protection. Thus, in an expanded study, in the absence of an intranasal adjuvant, we evaluated if covalent bonding of RBD to the scaffold was required to induce an antibody response. Covalent grafting of RBD was required for the vaccine to be immunogenic, and animals vaccinated with RBD + SpyCage more rapidly cleared SARS-CoV-2 from both the upper and lower respiratory tract. These findings demonstrate the intranasal SpyCage vaccine platform can induce protection against SARS-CoV-2 and, with additional modifications to improve immunogenicity, is a versatile platform for the development of intranasal vaccines targeting respiratory pathogens.IMPORTANCEDespite the availability of efficacious COVID vaccines that reduce disease severity, SARS-CoV-2 continues to spread. To limit SARS-CoV-2 transmission, the next generation of vaccines must induce immunity in the mucosa of the upper respiratory tract. Therefore, we performed proof-of-principle, intranasal vaccination studies with a recombinant protein nanoparticle scaffold, SpyCage, decorated with the RBD of the S protein (SpyCage + RBD). We show that SpyCage + RBD was immunogenic and enhanced SARS-CoV-2 clearance from the nose and lungs of Syrian hamsters. Moreover, covalent grafting of the RBD to the scaffold was required to induce an immune response when given via the intranasal route. These proof-of-concept findings indicate that with further enhancements to immunogenicity (e.g., adjuvant incorporation and antigen optimization), the SpyCage scaffold has potential as a versatile, intranasal vaccine platform for respiratory pathogens.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Humans , Mesocricetus , Nanovaccines , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Neutralizing
3.
J Virol ; 96(22): e0148022, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36317880

ABSTRACT

Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Humans , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Influenza, Human/transmission , Mutation , Orthomyxoviridae Infections/transmission , Reassortant Viruses/genetics , Swine , Swine Diseases/virology
4.
mBio ; 13(6): e0254022, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36300929

ABSTRACT

Airborne transmission in ferrets is a key component of pandemic risk assessment. However, some emerging avian influenza viruses transmit between ferrets but do not spread in humans. Therefore, we evaluated sequential rounds of airborne transmission as an approach to enhance the predictive accuracy of the ferret model. We reasoned that infection of ferrets via the respiratory route and onward transmission would more closely model transmission in humans. We hypothesized that pandemic and seasonal viruses would transmit efficiently over two rounds of transmission, while emerging avian viruses would fail to transmit in a second round. The 2009 pandemic H1N1 (pdm09) and seasonal H3N2 viruses were compared to avian-origin H7N9 and H3N8 viruses. Depending on the virus strain, transmission efficiency varied from 50 to 100% during the first round of transmission; the efficiency for each virus did not change during the second round, and viral replication kinetics in both rounds of transmission were similar. Both the H1N1pdm09 and H7N9 viruses acquired specific mutations during sequential transmission, while the H3N2 and H3N8 viruses did not; however, a global analysis of host-adaptive mutations revealed that minimal changes were associated with transmission of H1N1 and H3N2 viruses, while a greater number of changes occurred in the avian H3N8 and H7N9 viruses. Thus, influenza viruses that transmit in ferrets maintain their transmission efficiency through serial rounds of transmission. This answers the question of whether ferrets can propagate viruses through more than one round of airborne transmission and emphasizes that transmission in ferrets is necessary but not sufficient to infer transmissibility in humans. IMPORTANCE Airborne transmission in ferrets is used to gauge the pandemic potential of emerging influenza viruses; however, some emerging influenza viruses that transmit between ferrets do not spread between humans. Therefore, we evaluated sequential rounds of airborne transmission in ferrets as a strategy to enhance the predictive accuracy of the ferret model. Human influenza viruses transmitted efficiently (>83%) over two rounds of airborne transmission, demonstrating that, like humans, ferrets infected by the respiratory route can propagate the infection onward through the air. However, emerging avian influenza viruses with associated host-adaptive mutations also transmitted through sequential transmission. Thus, airborne transmission in ferrets is necessary but not sufficient to infer transmissibility in humans, and sequential transmission did not enhance pandemic risk assessment.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H7N9 Subtype , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Ferrets , Influenza A Virus, H3N2 Subtype , Influenza A Virus, H7N9 Subtype/genetics , Birds
5.
Pathogens ; 11(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36145399

ABSTRACT

The current diversity of influenza A viruses (IAV) circulating in swine is largely a consequence of human-to-swine transmission events and consequent evolution in pigs. However, little is known about the requirements for human IAVs to transmit to and subsequently adapt in pigs. Novel human-like H3 viruses were detected in swine herds in the U.S. in 2012 and have continued to circulate and evolve in swine. We evaluated the contributions of gene segments on the ability of these viruses to infect pigs by using a series of in vitro models. For this purpose, reassortant viruses were generated by reverse genetics (rg) swapping the surface genes (hemagglutinin-HA and neuraminidase-NA) and internal gene segment backbones between a human-like H3N1 isolated from swine and a seasonal human H3N2 virus with common HA ancestry. Virus growth kinetics in porcine intestinal epithelial cells (SD-PJEC) and in ex-vivo porcine trachea explants were significantly reduced by replacing the swine-adapted HA with the human seasonal HA. Unlike the human HA, the swine-adapted HA demonstrated more abundant attachment to epithelial cells throughout the swine respiratory tract by virus histochemistry and increased entry into SD-PJEC swine cells. The human seasonal internal gene segments improved replication of the swine-adapted HA at 33 °C, but decreased replication at 40 °C. Although the HA was crucial for the infectivity in pigs and swine tissues, these results suggest that the adaptation of human seasonal H3 viruses to swine is multigenic and that the swine-adapted HA alone was not sufficient to confer the full phenotype of the wild-type swine-adapted virus.

6.
mSphere ; 7(5): e0030322, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36040048

ABSTRACT

In response to the demand for N95 respirators by health care workers during the COVID-19 pandemic, we evaluated decontamination of N95 respirators using an aerosolized hydrogen peroxide (aHP) system. This system is designed to dispense a consistent atomized spray of aerosolized, 7% hydrogen peroxide (H2O2) solution over a treatment cycle. Multiple N95 respirator models were subjected to 10 or more cycles of respirator decontamination, with a select number periodically assessed for qualitative and quantitative fit testing. In parallel, we assessed the ability of aHP treatment to inactivate multiple viruses absorbed onto respirators, including phi6 bacteriophage, herpes simplex virus 1 (HSV-1), coxsackievirus B3 (CVB3), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For pathogens transmitted via respiratory droplets and aerosols, it is critical to address respirator safety for reuse. This study provided experimental validation of an aHP treatment process that decontaminates the respirators while maintaining N95 function. External National Institute for Occupational Safety & Health (NIOSH) certification verified respirator structural integrity and filtration efficiency after 10 rounds of aHP treatment. Virus inactivation by aHP was comparable to the decontamination of commercial spore-based biological indicators. These data demonstrate that the aHP process is effective, with successful fit-testing of respirators after multiple aHP cycles, effective decontamination of multiple virus species, including SARS-CoV-2, successful decontamination of bacterial spores, and filtration efficiency maintained at or greater than 95%. While this study did not include extended or clinical use of N95 respirators between aHP cycles, these data provide proof of concept for aHP decontamination of N95 respirators before reuse in a crisis-capacity scenario. IMPORTANCE The COVID-19 pandemic led to unprecedented pressure on health care and research facilities to provide personal protective equipment. The respiratory nature of the SARS-CoV2 pathogen makes respirator facepieces a critical protective measure to limit inhalation of this virus. While respirator facepieces were designed for single use and disposal, the pandemic increased overall demand for N95 respirators, and corresponding manufacturing and supply chain limitations necessitated the safe reuse of respirators when necessary. In this study, we repurposed an aerosolized hydrogen peroxide (aHP) system that is regularly utilized to decontaminate materials in a biosafety level 3 (BSL3) facility, to develop a method for decontamination of N95 respirators. Results from viral inactivation, biological indicators, respirator fit testing, and filtration efficiency testing all indicated that the process was effective at rendering N95 respirators safe for reuse. This proof-of-concept study establishes baseline data for future testing of aHP in crisis-capacity respirator-reuse scenarios.


Subject(s)
COVID-19 , N95 Respirators , Humans , COVID-19/prevention & control , Pandemics/prevention & control , Hydrogen Peroxide/pharmacology , SARS-CoV-2 , Virus Inactivation , Decontamination/methods , Feasibility Studies , RNA, Viral , Equipment Reuse
7.
Nutrients ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893921

ABSTRACT

Vitamin D supplementation is linked to improved outcomes from respiratory virus infection, and the COVID-19 pandemic renewed interest in understanding the potential role of vitamin D in protecting the lung from viral infections. Therefore, we evaluated the role of vitamin D using animal models of pandemic H1N1 influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In mice, dietary-induced vitamin D deficiency resulted in lung inflammation that was present prior to infection. Vitamin D sufficient (D+) and deficient (D-) wildtype (WT) and D+ and D- Cyp27B1 (Cyp) knockout (KO, cannot produce 1,25(OH)2D) mice were infected with pandemic H1N1. D- WT, D+ Cyp KO, and D- Cyp KO mice all exhibited significantly reduced survival compared to D+ WT mice. Importantly, survival was not the result of reduced viral replication, as influenza M gene expression in the lungs was similar for all animals. Based on these findings, additional experiments were performed using the mouse and hamster models of SARS-CoV-2 infection. In these studies, high dose vitamin D supplementation reduced lung inflammation in mice but not hamsters. A trend to faster weight recovery was observed in 1,25(OH)2D treated mice that survived SARS-CoV-2 infection. There was no effect of vitamin D on SARS-CoV-2 N gene expression in the lung of either mice or hamsters. Therefore, vitamin D deficiency enhanced disease severity, while vitamin D sufficiency/supplementation reduced inflammation following infections with H1N1 influenza and SARS-CoV-2.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Vitamin D Deficiency , Animals , Humans , Lung/metabolism , Mice , Pandemics , SARS-CoV-2 , Vitamin D/therapeutic use , Vitamin D Deficiency/epidemiology , Vitamins
8.
mBio ; 13(4): e0117422, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35862762

ABSTRACT

Past pandemic influenza viruses with sustained human-to-human transmissibility have emerged from animal influenza viruses. Employment of experimental models to assess the pandemic risk of emerging zoonotic influenza viruses provides critical information supporting public health efforts. Ferret transmission experiments have been utilized to predict the human-to-human transmission potential of novel influenza viruses. However, small sample sizes and a lack of standardized protocols can introduce interlaboratory variability, complicating interpretation of transmission experimental data. To assess the range of variation in ferret transmission experiments, a global exercise was conducted by 11 laboratories using two common stock H1N1 influenza viruses with different transmission characteristics in ferrets. Parameters known to affect transmission were standardized, including the inoculation route, dose, and volume, as well as a strict 1:1 donor/contact ratio for respiratory droplet transmission. Additional host and environmental parameters likely to affect influenza transmission kinetics were monitored and analyzed. The overall transmission outcomes for both viruses across 11 laboratories were concordant, suggesting the robustness of the ferret model for zoonotic influenza risk assessment. Among environmental parameters that varied across laboratories, donor-to-contact airflow directionality was associated with increased transmissibility. To attain high confidence in identifying viruses with moderate to high transmissibility or low transmissibility under a smaller number of participating laboratories, our analyses support the notion that as few as three but as many as five laboratories, respectively, would need to independently perform viral transmission experiments with concordant results. This exercise facilitates the development of a more homogenous protocol for ferret transmission experiments that are employed for the purposes of risk assessment. IMPORTANCE Following detection of a novel virus, rapid characterization efforts (both in vitro and in vivo) are undertaken at numerous laboratories worldwide to evaluate the relative risk posed to human health. Aggregation of these data are critical, but the use of nonstandardized protocols can make interpretation of divergent results a challenge. For evaluation of virus transmissibility, a multifactorial trait which can only be evaluated in vivo, identifying intrinsic levels of variability between groups can improve the utility of these data, as well as ensure that experiments are performed with sufficient replication to ensure high confidence in compiled results. Using the ferret transmission model and two influenza A viruses, we conducted a multicenter standardization exercise to improve the interpretation of transmission data generated during risk assessment activities; this exercise serves as a model for future efforts employing both in vitro and in vivo models against possible pandemic pathogens.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Animals , Ferrets , Humans , Laboratories , Lung , Risk Assessment
9.
J Virol ; 95(13): e0223220, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33827954

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has initiated a global pandemic, and several vaccines have now received emergency use authorization. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semipermissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of viral RNA (vRNA) at multiple time points, direct contact transmission was efficient to 3/3 and 3/4 contact animals in 2 respective studies, while respiratory droplet transmission was poor to only 1/4 contact animals. To determine if previously infected ferrets were protected against reinfection, ferrets were rechallenged 28 or 56 days postinfection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets, ferrets were vaccinated using a prime-boost strategy with the S protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined, these studies demonstrate direct contact is the predominant mode of transmission of the USA-WA1/2020 isolate in ferrets and that immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show that the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against reinfection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest that protection of the upper respiratory tract will require vaccine approaches that mimic natural infection.


Subject(s)
COVID-19/transmission , Disease Models, Animal , Reinfection/prevention & control , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Ferrets , Injections, Intramuscular , Nose/virology , Reinfection/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/administration & dosage , Viral Load
10.
J Virol Methods ; 288: 114011, 2021 02.
Article in English | MEDLINE | ID: mdl-33152409

ABSTRACT

Influenza viruses are among the most significant pathogens of humans and animals. Reverse genetics allows for the study of molecular attributes that modulate virus host range, virulence and transmission. The most common reverse genetics methods use bi-directional vectors containing a host RNA polymerase (pol) I promoter to produce virus-like RNAs and a host RNA pol II promoter to direct the synthesis of viral proteins. Given the species-dependency of the pol I promoter and virus-host interactions that influence replication of animal-origin influenza viruses in human-derived cells, we explored the potential of using the swine RNA pol I promoter (spol1) in a bi-directional vector for rescuing type A and B influenza viruses (IAV and IBV, respectively) in swine and human cells. The spol1-based bi-directional plasmid vector led to efficient rescue of IAVs of different origins (human, swine, and avian) as well as IBV in both swine- and human-origin tissue culture cells. In addition, virus rescue was successful using a recombinant bacmid containing all eight segments of a swine origin IAV. In conclusion, the spol1-based reverse genetics system is a new platform to study influenza viruses and produce swine influenza vaccines with increased transfection efficiency.


Subject(s)
Herpesvirus 1, Cercopithecine , Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Animals , Humans , Influenza, Human/prevention & control , Orthomyxoviridae/genetics , RNA Polymerase I/genetics , Reverse Genetics , Swine
11.
Viruses ; 10(9)2018 08 28.
Article in English | MEDLINE | ID: mdl-30154345

ABSTRACT

The 1918 H1N1 Spanish Influenza pandemic was the most severe pandemic in modern history. Unlike more recent pandemics, most of the 1918 H1N1 virus' genome was derived directly from an avian influenza virus. Recent avian-origin H5 A/goose/Guangdong/1/1996 (GsGd) and Asian H7N9 viruses have caused several hundred human infections with high mortality rates. While these viruses have not spread beyond infected individuals, if they evolve the ability to transmit efficiently from person-to-person, specifically via the airborne route, they will initiate a pandemic. Therefore, this review examines H5 GsGd and Asian H7N9 viruses that have caused recent zoonotic infections with a focus on viral properties that support airborne transmission. Several GsGd H5 and Asian H7N9 viruses display molecular changes that potentiate transmission and/or exhibit ability for limited transmission between ferrets. However, the hemagglutinin of these viruses is unstable; this likely represents the most significant obstacle to the emergence of a virus capable of efficient airborne transmission. Given the global disease burden of an influenza pandemic, continued surveillance and pandemic preparedness efforts against H5 GsGd and Asian lineage H7N9 viruses are warranted.


Subject(s)
Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza, Human/epidemiology , Influenza, Human/virology , Pandemics/prevention & control , Animals , Ferrets , Humans , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza in Birds/transmission , Influenza, Human/transmission , Phylogeny , Poultry , Zoonoses/transmission , Zoonoses/virology
12.
Vaccine ; 36(14): 1871-1879, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29503113

ABSTRACT

The continued detection of zoonotic influenza infections, most notably due to the avian influenza A H5N1 and H7N9 subtypes, underscores the need for pandemic preparedness. Decades of experience with live attenuated influenza vaccines (LAIVs) for the control of seasonal influenza support the safety and effectiveness of this vaccine platform. All LAIV candidates are derived from one of two licensed master donor viruses (MDVs), cold-adapted (ca) A/Ann Arbor/6/60 or ca A/Leningrad/134/17/57. A number of LAIV candidates targeting avian H5 influenza viruses derived with each MDV have been evaluated in humans, but have differed in their infectivity and immunogenicity. To understand these differences, we generated four H5N2 candidate pandemic LAIVs (pLAIVs) derived from either MDV and compared their biological characteristics in vitro and in vivo. We demonstrate that all candidate pLAIVs, regardless of gene constellation and derivation, were comparable with respect to infectivity, immunogenicity, and protection from challenge in the ferret model of influenza. These observations suggest that differences in clinical performance of H5 pLAIVs may be due to factors other than inherent biological properties of the two MDVs.


Subject(s)
Ferrets/immunology , Immunogenicity, Vaccine , Influenza A Virus, H5N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cell Line , Humans , Immunization
13.
NPJ Vaccines ; 2: 35, 2017.
Article in English | MEDLINE | ID: mdl-29263889

ABSTRACT

The stem of the influenza A virus hemagglutinin (HA) is highly conserved and represents an attractive target for a universal influenza vaccine. The 18 HA subtypes of influenza A are phylogenetically divided into two groups, and while protection with group 1 HA stem vaccines has been demonstrated in animal models, studies on group 2 stem vaccines are limited. Thus, we engineered group 2 HA stem-immunogen (SI) vaccines targeting the epitope for the broadly neutralizing monoclonal antibody CR9114 and evaluated vaccine efficacy in mice and ferrets. Immunization induced antibodies that bound to recombinant HA protein and viral particles, and competed with CR9114 for binding to the HA stem. Mice vaccinated with H3 and H7-SI were protected from lethal homologous challenge with X-79 (H3N2) or A/Anhui/1/2013 (H7N9), and displayed moderate heterologous protection. In ferrets, H7-SI vaccination did not significantly reduce weight loss or nasal wash titers after robust 107 TCID50 H7N9 virus challenge. Epitope mapping revealed ferrets developed lower titers of antibodies that bound a narrow range of HA stem epitopes compared to mice, and this likely explains the lower efficacy in ferrets. Collectively, these findings indicate that while group 2 SI vaccines show promise, their immunogenicity and efficacy are reduced in larger outbred species, and will have to be enhanced for successful translation to a universal vaccine.

14.
J Virol ; 91(24)2017 12 15.
Article in English | MEDLINE | ID: mdl-29046448

ABSTRACT

Influenza viruses of the H1N1, H2N2, and H3N2 subtypes have caused previous pandemics. H2 influenza viruses represent a pandemic threat due to continued circulation in wild birds and limited immunity in the human population. In the event of a pandemic, antiviral agents are the mainstay for treatment, but broadly neutralizing antibodies (bNAbs) may be a viable alternative for short-term prophylaxis or treatment. The hemagglutinin stem binding bNAbs CR6261 and CR9114 have been shown to protect mice from severe disease following challenge with H1N1 and H5N1 and with H1N1, H3N2, and influenza B viruses, respectively. Early studies with CR6261 and CR9114 showed weak in vitro activity against human H2 influenza viruses, but the in vivo efficacy against H2 viruses is unknown. Therefore, we evaluated these antibodies against human- and animal-origin H2 viruses A/Ann Arbor/6/1960 (H2N2) (AA60) and A/swine/MO/4296424/06 (H2N3) (Sw06). In vitro, CR6261 neutralized both H2 viruses, while CR9114 only neutralized Sw06. To evaluate prophylactic efficacy, mice were given CR6261 or CR9114 and intranasally challenged 24 h later with lethal doses of AA60 or Sw06. Both antibodies reduced mortality, weight loss, airway inflammation, and pulmonary viral load. Using engineered bNAb variants, antibody-mediated cell cytotoxicity reporter assays, and Fcγ receptor-deficient (Fcer1g-/-) mice, we show that the in vivo efficacy of CR9114 against AA60 is mediated by Fcγ receptor-dependent mechanisms. Collectively, these findings demonstrate the in vivo efficacy of CR6261 and CR9114 against H2 viruses and emphasize the need for in vivo evaluation of bNAbs.IMPORTANCE bNAbs represent a strategy to prevent or treat infection by a wide range of influenza viruses. The evaluation of these antibodies against H2 viruses is important because H2 viruses caused a pandemic in 1957 and could cross into humans again. We demonstrate that CR6261 and CR9114 are effective against infection with H2 viruses of both human and animal origin in mice, despite the finding that CR9114 did not display in vitro neutralizing activity against the human H2 virus. These findings emphasize the importance of in vivo evaluation and testing of bNAbs.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A Virus, H2N2 Subtype/immunology , Influenza, Human/prevention & control , Neutralization Tests/standards , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Viral/administration & dosage , Cross Reactions , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H2N2 Subtype/pathogenicity , Influenza, Human/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Receptors, IgG/deficiency , Receptors, IgG/genetics , Receptors, IgG/immunology
15.
PLoS Pathog ; 13(8): e1006565, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28817732

ABSTRACT

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that was first detected in humans in 2012 as a cause of severe acute respiratory disease. As of July 28, 2017, there have been 2,040 confirmed cases with 712 reported deaths. While many infections have been fatal, there have also been a large number of mild or asymptomatic cases discovered through monitoring and contact tracing. New Zealand white rabbits are a possible model for asymptomatic infection with MERS-CoV. In order to discover more about non-lethal infections and to learn whether a single infection with MERS-CoV would protect against reinfection, we inoculated rabbits with MERS-CoV and monitored the antibody and inflammatory response. Following intranasal infection, rabbits developed a transient dose-dependent pulmonary infection with moderately high levels of viral RNA, viral antigen, and perivascular inflammation in multiple lung lobes that was not associated with clinical signs. The rabbits developed antibodies against viral proteins that lacked neutralizing activity and the animals were not protected from reinfection. In fact, reinfection resulted in enhanced pulmonary inflammation, without an associated increase in viral RNA titers. Interestingly, passive transfer of serum from previously infected rabbits to naïve rabbits was associated with enhanced inflammation upon infection. We further found this inflammation was accompanied by increased recruitment of complement proteins compared to primary infection. However, reinfection elicited neutralizing antibodies that protected rabbits from subsequent viral challenge. Our data from the rabbit model suggests that people exposed to MERS-CoV who fail to develop a neutralizing antibody response, or persons whose neutralizing antibody titers have waned, may be at risk for severe lung disease on re-exposure to MERS-CoV.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/immunology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Immunohistochemistry , Inflammation/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Polymerase Chain Reaction , Rabbits
16.
J Virol ; 91(19)2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28701401

ABSTRACT

The recent outbreak of avian origin H10N7 influenza among seals in northern Europe and two fatal human infections with an avian H10N8 virus in China have demonstrated that H10 viruses can spread between mammals and cause severe disease in humans. To gain insight into the potential for H10 viruses to cross the species barrier and to identify a candidate vaccine strain, we evaluated the in vitro and in vivo properties and antibody response in ferrets to 20 diverse H10 viruses. H10 virus infection of ferrets caused variable weight loss, and all 20 viruses replicated throughout the respiratory tract; however, replication in the lungs was highly variable. In glycan-binding assays, the H10 viruses preferentially bound "avian-like" α2,3-linked sialic acids. Importantly, several isolates also displayed strong binding to long-chain "human-like" α2,6-linked sialic acids and exhibited comparable or elevated neuraminidase activity relative to human H1N1, H2N2, and H3N2 viruses. In hemagglutination inhibition assays, 12 antisera cross-reacted with ≥14 of 20 H10 viruses, and 7 viruses induced neutralizing activity against ≥15 of the 20 viruses. By combining data on weight loss, viral replication, and the cross-reactive antibody response, we identified A/mallard/Portugal/79906/2009 (H10N7) as a suitable virus for vaccine development. Collectively, our findings suggest that H10 viruses may continue to sporadically infect humans and other mammals, underscoring the importance of developing an H10 vaccine for pandemic preparedness.IMPORTANCE Avian origin H10 influenza viruses sporadically infect humans and other mammals; however, little is known about viruses of this subtype. Thus, we characterized the biological properties of 20 H10 viruses in vitro and in ferrets. Infection caused mild to moderate weight loss (5 to 15%), with robust viral replication in the nasal tissues and variable replication in the lung. H10 viruses preferentially bind "avian-like" sialic acids, although several isolates also displayed binding to "human-like" sialic acid receptors. This is consistent with the ability of H10 viruses to cross the species barrier and warrants selection of an H10 vaccine strain. By evaluating the cross-reactive antibody response to the H10 viruses and combining this analysis with viral replication and weight loss findings, we identified A/mallard/Portugal/79906/2009 (H10N7) as a suitable H10 vaccine strain.

17.
J Virol ; 91(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28381580

ABSTRACT

Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive (ts) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated (att) virus vaccines (IAV att). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines.IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013-2014, 2014-2015, and 2015-2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an alternative strategy, the incorporation of 2 amino acid mutations and a modified HA tag at the C terminus of PB1, which is sufficient to attenuate the IBV. As a LAIV, this novel vaccine provides complete protection against IBV strains. The availability of attenuated IAV and IBV backbones based on contemporary strains offers alternative platforms for the development of LAIVs that may overcome current limitations.


Subject(s)
Influenza B virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Amino Acids/genetics , Animals , Antigenic Variation/genetics , Antigenic Variation/immunology , Genome, Viral , Humans , Immunity, Humoral , Influenza B virus/enzymology , Influenza Vaccines/genetics , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Lung/pathology , Lung/virology , Mice , Mutation , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , T-Lymphocytes/immunology , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology
18.
J Gen Virol ; 98(2): 155-165, 2017 02.
Article in English | MEDLINE | ID: mdl-27983474

ABSTRACT

Human infections with A/Jiangxi-Donghu/346/2013 (H10N8) virus have raised concerns about its pandemic potential. In order to develop a vaccine against this virus, the immunogenicity of its haemagglutinin protein was evaluated in mice. Using both whole-virion and recombinant subunit protein vaccines, we showed that two doses of either vaccine elicited neutralizing antibody responses. The protective efficacy of the vaccine-induced responses was assessed using a reverse-genetics-derived H10 reassortant virus on the A/Puerto Rico/8/34 (H1N1) backbone. The reassortant virus replicated efficiently in the respiratory tract of unvaccinated mice whereas vaccinated mice were completely protected from challenge, with no detectable viral load in the lower respiratory tract. Finally, the serum neutralizing antibody responses elicited by the H10 vaccines also exhibited cross-neutralizing activity against three heterologous wild-type H10 viruses. Collectively, these findings demonstrate that different vaccine platforms presenting the H10 haemagglutinin protein induce protective immunity.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunogenicity, Vaccine , Influenza A Virus, H10N8 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/blood , Animals , Cross Reactions , Dogs , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H10N8 Subtype/genetics , Influenza A Virus, H10N8 Subtype/physiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/genetics , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Reassortant Viruses/genetics , Reassortant Viruses/immunology , Respiratory System/virology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Virus Replication
19.
J Virol ; 89(22): 11213-22, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26311895

ABSTRACT

UNLABELLED: Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. IMPORTANCE: Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide. New human-like H3N2 and H3N1 viruses that contain a mix of human and swine gene segments were recently detected by the USDA surveillance system. The human-like viruses efficiently infected pigs and resulted in onward airborne transmission, likely due to the multiple changes identified between human and swine H3 viruses. The human-like swine viruses are distinct from contemporary U.S. H3 swine viruses and from the strains used in swine vaccines, which could have a significant impact on the swine industry due to a lack of population immunity. Additionally, public health experts should consider an appropriate assessment of the risk of these emerging swine H3 viruses for the human population.


Subject(s)
Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/pathogenicity , Orthomyxoviridae Infections/transmission , Reassortant Viruses/immunology , Reassortant Viruses/pathogenicity , Swine Diseases/transmission , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Cell Line , Cross Reactions/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/virology , Neuraminidase/classification , Neuraminidase/immunology , Orthomyxoviridae Infections/virology , Reassortant Viruses/genetics , Swine/virology , Swine Diseases/virology , United States
20.
Virology ; 479-480: 247-58, 2015 May.
Article in English | MEDLINE | ID: mdl-25791336

ABSTRACT

Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV.


Subject(s)
Communicable Diseases, Emerging/virology , Coronavirus Infections/virology , Disease Models, Animal , Middle East Respiratory Syndrome Coronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Animals , Host Specificity , Host-Pathogen Interactions , Humans , Middle East Respiratory Syndrome Coronavirus/growth & development , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/growth & development , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe acute respiratory syndrome-related coronavirus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...