Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Pharmacol ; 15: 13-26, 2023.
Article in English | MEDLINE | ID: mdl-36699694

ABSTRACT

Background: The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems. Aim of Study: In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo. Materials and Methods: The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A. Results: All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE2 and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals. Conclusion: Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.

2.
Microbiol Resour Announc ; 11(8): e0037522, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35862909

ABSTRACT

Lumpy skin disease (LSD) is an economically devastating and transboundary disease in cattle. Here, we report the coding-complete genome sequence of the LSDV72/PrachuapKhiriKhan/Thailand/2021 strain, which was isolated from an affected cow during the first LSD outbreak in Thailand in 2021. The sequence will be beneficial for future genomic studies of the virus.

3.
Transbound Emerg Dis ; 69(5): e2145-e2152, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35396931

ABSTRACT

Lumpy skin disease (LSD) is one of the most important transboundary and emerging diseases in cattle. The disease causes significant economic losses in animal production and trade worldwide. The first LSD outbreak was recorded in March 2021, at Roi-Et province in the northeastern region of Thailand. Thereafter, the disease had rapidly spread into neighbouring provinces and throughout the country. The aim of the present study was to provide information regarding to the molecular detection and characterization of LSD viruses from outbreaks in Thailand in 2021. There were 1,748,112 susceptible and 604,404 affected animals (n = 588,512 [36.30%], beef cattle; n = 12,367 [15.74%], dairy cattle and n = 3524 [7.35%], buffaloes). The morbidity and mortality rates were 34.57% and 3.47%, respectively, and the case fatality rate was 10.05% (60,713 deaths). Based on real-time polymerase chain reaction results, the p32 gene of LSD virus (LSDV) was detected more frequently in skin nodule samples (54/77, 70.13%) than in nasal swabs (26/55, 42.57%) and EDTA blood (16/77, 20.78%) samples. Moreover, the copy number of the p32 gene was higher in skin nodule samples than in nasal swab and EDTA blood samples (cycle threshold value = 21.94 ± 0.62 vs. 31.52 ± 0.66 and 34.27 ± 0.32, respectively). Furthermore, 29 (53.70%) of 54 capripoxvirus-positive skin nodule samples were successfully isolated from Madin-Darby bovine kidney cells, and the cytopathic effect was observed 72 h after inoculation. Based on the phylogenetic trees of the GPCR, ANK and RPO30 gene sequences, the LSDV isolates from Thailand were distinct from both the LSDV-field and LSDV-vaccine groups and were closely correlated with the LSDV strains isolated from mainland China, Hong Kong territory and Vietnam in 2020. Additionally, they could be a potential virulent vaccine-recombinant LSDV strain.


Subject(s)
Cattle Diseases , Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , Edetic Acid , Lumpy Skin Disease/epidemiology , Phylogeny , Thailand/epidemiology
4.
Acta Trop ; 224: 106147, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34562422

ABSTRACT

Biting midges of the genus Culicoides Latreille are biological vectors of bluetongue virus (BTV), a member of family Reoviridae, genus Orbivirus. About 30 species of Culicoides have been identified as competent BTV vectors worldwide. Even though high seroprevalence of BTV has been reported among livestock ruminants from western Thailand, the Culicoides species which contribute to BTV transmission remain unclear. In the present study, Culicoides were collected from eight sampling sites, located in two BTV prevalent provinces in western Thailand. Adult Culicoides were identified using wing morphology and cytochrome c oxidase subunit I (COI) mtDNA molecular marker. A total of 9,677 Culicoides specimens belonging to 7 subgenera, 3 species groups, and 23 species were identified. After comparing sequencing results with available data from GenBank, COI sequences of five species were reported for the first time from Thailand. The most abundant potential BTV vector species collected were C. peregrinus, followed by C. orientalis, C. imicola, C. oxystoma, and C. fulvus. Out of 72 Culicoides pools, 9 pools (4 from C. orientalis, 2 from C. imicola, 2 from C. oxystoma, and 1 from C. fulvus) were positive by BTV RT-PCR analyses. These results are new to Culicoides BTV vector knowledge in Thailand and will contribute to further BTV studies in this particular region.


Subject(s)
Bluetongue virus , Bluetongue , Ceratopogonidae , Animals , Bluetongue virus/genetics , Ceratopogonidae/genetics , DNA Barcoding, Taxonomic , Insect Vectors/genetics , Seroepidemiologic Studies , Sheep , Thailand
5.
J Biomater Appl ; 36(4): 701-713, 2021 10.
Article in English | MEDLINE | ID: mdl-33653156

ABSTRACT

PURPOSE: To understand the complication and histopathological characteristics between the Silk Fibroin/Polyurethanes (SF/PU) and the host response, and to unveil the compatibility of the patch in diabetes individuals. METHODS: Rats were divided into DM and control (CT) groups, and the DM group was induced with streptozotocin. All groups underwent the SF/PU patch implantation in the abdominal aorta, and the implanted patches were evaluated at one, two, three, and four weeks after implantation. RESULTS: DM group had more fibrosis formation and a delayed endothelialization compared to the CT group. There was no evidence of chronic inflammation in both DM and CT groups. CONCLUSIONS: Fibrosis in hyperglycemic individuals could promote the formation of new vascular structures in the implanted patch such as endothelial and vascular smooth muscle cells. In summary, the SF/PU patch was no serious complications when implanted under hyperglycemia, and the patch was suitable to implant in diabetes mellitus.


Subject(s)
Biocompatible Materials/chemistry , Fibroins/chemistry , Polyurethanes/chemistry , Silk/chemistry , Animals , Blood Vessels , Hyperglycemia , Male , Materials Testing , Rats , Rats, Sprague-Dawley , Tissue Engineering
6.
Arch Virol ; 165(11): 2647-2651, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32844234

ABSTRACT

In order to study potential pathogenic mechanisms of feline morbillivirus (FeMV) in infected kidney cells, we performed a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and an immunofluorescence assay (IFA) with an anti-FeMV P protein antibody on a total of 38 cat kidney tissues, 12 of which were positive for FeMV. Among these samples, we detected significantly larger numbers of apoptotic cells in FeMV-positive tissues than in FeMV-negative tissues, and in these tissues, a substantial percentage of TUNEL-positive (TUNEL+) cells contained the FeMV P protein (mean, 37.4; range, 17.4-82.9), suggesting that induction of apoptosis may be an important mechanism for pathological changes associated with FeMV infection in cat kidney tissues.


Subject(s)
Apoptosis , Kidney/pathology , Morbillivirus Infections/veterinary , Morbillivirus/pathogenicity , Animals , Cats , Female , Fluorescent Antibody Technique , Kidney/virology , Male , Morbillivirus/isolation & purification , Morbillivirus Infections/pathology
7.
Virus Res ; 259: 62-67, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30391400

ABSTRACT

Bats are reservoir hosts of many zoonotic viruses and identification of viruses that they carry is important. This study aimed to use high throughput screening to identify the viruses in fecal guano of Taiwanese insectivorous bats caves in order to obtain more information on bat-derived pathogenic viruses in East Asia. Guano samples were collected from two caves in Taiwan, pooled, and then subjected to Multiplex PCR-based next generation sequencing for viral identification. Subsequently, encephalomyocarditis virus (EMCV) sequence was detected and confirmed by reverse transcription PCR. EMCV is considered as rodent virus and thus, animal species identification through cytochrome oxidase I (COI) barcoding was further done to identify the viral source. Finally, determination of distribution and verification of the presence of EMCV in guano obtained from Japanese and South Korean caves was also done. We concluded that the guano collected was not contaminated with the excrement of rodents which were reported and presumed to live in Taiwan. Also, EMCV genome fragments were found in guanos of Japanese and South Korean caves. It is possible that the eastern bent-wing bat (Miniopterus fuliginosus) is one of the natural hosts of EMCV in East Asia.


Subject(s)
Animal Diseases/virology , Cardiovirus Infections/veterinary , Chiroptera/virology , Disease Reservoirs/virology , Encephalomyocarditis virus/classification , Encephalomyocarditis virus/genetics , Animals , Asia, Eastern , Genetic Variation , Genome, Viral , Sequence Analysis, DNA
8.
Vet Microbiol ; 228: 12-19, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30593357

ABSTRACT

Feline morbillivirus (FeMV) is an emerging member of morbillivirus discovered in 2012. Although association of FeMV infection with kidney diseases in cats has been suggested, the pathogenicity of the virus has not been clear to date. To study the association between FeMV infection and pathological changes in kidney tissues of infected cats, we performed immunohistochemistry and immunofluorescent assays to detect FeMV antigens and analyzed the effect of FeMV infection on the pathological changes in the kidney tissues. In 38 kidney tissue samples from cats, some tissue injury scores were significantly higher when the FeMV antigens were detected, especially those for the tubular tissues in which the FeMV antigens were mostly localized. Pathological changes associated with the FeMV antigens included the ones typically found in chronic kidney diseases, such as interstitial cell infiltration, glomerulosclerosis, tubular atrophy and fibrosis. We also detected some feline IgG localizations in glomerular tissues, though co-localization or significant association with the FeMV antigens were not found. Our study confirms the association of FeMV infection with some kidney tissue injuries and provides additional information about roles of FeMV infection in chronic kidney diseases.


Subject(s)
Morbillivirus Infections/veterinary , Morbillivirus/pathogenicity , Animals , Cats , Chronic Disease/veterinary , Female , Immunohistochemistry/veterinary , Kidney/pathology , Kidney/virology , Male , Morbillivirus/isolation & purification , Morbillivirus Infections/pathology , Morbillivirus Infections/virology
9.
Arch Virol ; 162(8): 2421-2425, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28470418

ABSTRACT

Feline morbillivirus (FeMV), a member of the family Paramyxoviridae, is an emerging virus that was discovered in 2012. Despite the importance of FeMV infection in cats because of its postulated involvement in kidney diseases, no simple serological assay has been reported in its detection. Here, FeMV phosphoprotein (P protein) was expressed and purified as a glutathione-S-transferase (GST)-fusion protein and used for an enzyme-linked immunosorbent assay (ELISA) to detect FeMV-specific antibodies. With a cutoff value determined by immunoblotting, anti-FeMV P protein was detected with this assay in 22 (22%) of the 100 cat plasma samples collected from various regions of Japan. This ELISA is useful for epidemiological and immunological studies, as well as for diagnosis of FeMV infection.


Subject(s)
Antibodies, Viral/blood , Cat Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary , Morbillivirus Infections/diagnosis , Morbillivirus/immunology , Animals , Cat Diseases/immunology , Cat Diseases/virology , Cats , Enzyme-Linked Immunosorbent Assay/methods , Japan , Morbillivirus/isolation & purification , Morbillivirus Infections/blood , Morbillivirus Infections/immunology , Morbillivirus Infections/virology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology , Viral Proteins/genetics , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...