Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Nature ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987604

ABSTRACT

A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.

2.
Nat Med ; 30(6): 1622-1635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760585

ABSTRACT

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.


Subject(s)
Brain Neoplasms , Epigenesis, Genetic , Glioma , Humans , Prognosis , Glioma/genetics , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation/genetics , Animals , Mice , Male , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Middle Aged , Neurons/pathology , Neurons/metabolism , Adult , Single-Cell Analysis , Cell Line, Tumor , Transcriptome , Neoplasm Grading
3.
Cancer Cell ; 42(5): 904-914.e9, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38579724

ABSTRACT

A subset of patients with IDH-mutant glioma respond to inhibitors of mutant IDH (IDHi), yet the molecular underpinnings of such responses are not understood. Here, we profiled by single-cell or single-nucleus RNA-sequencing three IDH-mutant oligodendrogliomas from patients who derived clinical benefit from IDHi. Importantly, the tissues were sampled on-drug, four weeks from treatment initiation. We further integrate our findings with analysis of single-cell and bulk transcriptomes from independent cohorts and experimental models. We find that IDHi treatment induces a robust differentiation toward the astrocytic lineage, accompanied by a depletion of stem-like cells and a reduction of cell proliferation. Furthermore, mutations in NOTCH1 are associated with decreased astrocytic differentiation and may limit the response to IDHi. Our study highlights the differentiating potential of IDHi on the cellular hierarchies that drive oligodendrogliomas and suggests a genetic modifier that may improve patient stratification.


Subject(s)
Brain Neoplasms , Cell Differentiation , Isocitrate Dehydrogenase , Mutation , Oligodendroglioma , Oligodendroglioma/genetics , Oligodendroglioma/pathology , Oligodendroglioma/drug therapy , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/antagonists & inhibitors , Humans , Cell Differentiation/drug effects , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Cell Lineage/drug effects , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Cell Proliferation/drug effects , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Mice , Single-Cell Analysis/methods
4.
Cell ; 187(10): 2485-2501.e26, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38653236

ABSTRACT

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Spatial Analysis , Transcriptome/genetics , Tumor Microenvironment , Proteomics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Gene Expression Regulation, Neoplastic
5.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571421

ABSTRACT

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics
6.
Nat Commun ; 15(1): 968, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320988

ABSTRACT

Tumor microtubes (TMs) connect glioma cells to a network with considerable relevance for tumor progression and therapy resistance. However, the determination of TM-interconnectivity in individual tumors is challenging and the impact on patient survival unresolved. Here, we establish a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells using a dye uptake methodology, and validate it with recording of cellular calcium epochs and clinical correlations. Astrocyte-like and mesenchymal-like GB cells have the highest connectivity signature scores in scRNA-sequenced patient-derived xenografts and patient samples. In large GB cohorts, TM-network connectivity correlates with the mesenchymal subtype and dismal patient survival. CHI3L1 gene expression serves as a robust molecular marker of connectivity and functionally influences TM networks. The connectivity signature allows insights into brain tumor biology, provides a proof-of-principle that tumor cell TM-connectivity is relevant for patients' prognosis, and serves as a robust prognostic biomarker.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioma/genetics , Brain Neoplasms/genetics , Chitinase-3-Like Protein 1
7.
Acta Neuropathol ; 147(1): 21, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38244080

ABSTRACT

The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/therapy , DNA Methylation , Neoplasm Recurrence, Local/genetics , Survival Analysis
8.
Blood ; 143(12): 1124-1138, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38153903

ABSTRACT

ABSTRACT: The CD161 inhibitory receptor is highly upregulated by tumor-infiltrating T cells in multiple human solid tumor types, and its ligand, CLEC2D, is expressed by both tumor cells and infiltrating myeloid cells. Here, we assessed the role of the CD161 receptor in hematological malignancies. Systematic analysis of CLEC2D expression using the Cancer Cell Line Encyclopedia revealed that CLEC2D messenger RNA was most abundant in hematological malignancies, including B-cell and T-cell lymphomas as well as lymphocytic and myelogenous leukemias. CLEC2D protein was detected by flow cytometry on a panel of cell lines representing a diverse set of hematological malignancies. We, therefore, used yeast display to generate a panel of high-affinity, fully human CD161 monoclonal antibodies (mAbs) that blocked CLEC2D binding. These mAbs were specific for CD161 and had a similar affinity for human and nonhuman primate CD161, a property relevant for clinical translation. A high-affinity CD161 mAb enhanced key aspects of T-cell function, including cytotoxicity, cytokine production, and proliferation, against B-cell lines originating from patients with acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. In humanized mouse models, this CD161 mAb enhanced T-cell-mediated immunity, resulting in a significant survival benefit. Single cell RNA-seq data demonstrated that CD161 mAb treatment enhanced expression of cytotoxicity genes by CD4 T cells as well as a tissue-residency program by CD4 and CD8 T cells that is associated with favorable survival outcomes in multiple human cancer types. These fully human mAbs, thus, represent potential immunotherapy agents for hematological malignancies.


Subject(s)
Hematologic Neoplasms , Neoplasms , Animals , Mice , Humans , CD4-Positive T-Lymphocytes , Immunity, Cellular , CD8-Positive T-Lymphocytes , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , NK Cell Lectin-Like Receptor Subfamily B/genetics
9.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961527

ABSTRACT

Gliomas are incurable malignancies notable for an immunosuppressive microenvironment with abundant myeloid cells whose immunomodulatory properties remain poorly defined. Here, utilizing scRNA-seq data for 183,062 myeloid cells from 85 human tumors, we discover that nearly all glioma-associated myeloid cells express at least one of four immunomodulatory activity programs: Scavenger Immunosuppressive, C1Q Immunosuppressive, CXCR4 Inflammatory, and IL1B Inflammatory. All four programs are present in IDH1 mutant and wild-type gliomas and are expressed in macrophages, monocytes, and microglia whether of blood or resident myeloid cell origins. Integrating our scRNA-seq data with mitochondrial DNA-based lineage tracing, spatial transcriptomics, and organoid explant systems that model peripheral monocyte infiltration, we show that these programs are driven by microenvironmental cues and therapies rather than myeloid cell type, origin, or mutation status. The C1Q Immunosuppressive program is driven by routinely administered dexamethasone. The Scavenger Immunosuppressive program includes ligands with established roles in T-cell suppression, is induced in hypoxic regions, and is associated with immunotherapy resistance. Both immunosuppressive programs are less prevalent in lower-grade gliomas, which are instead enriched for the CXCR4 Inflammatory program. Our study provides a framework to understand immunomodulatory myeloid cells in glioma, and a foundation to develop more effective immunotherapies.

10.
Nature ; 623(7986): 366-374, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914930

ABSTRACT

The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor1-3 (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors4,5. The consequent glioma cell membrane depolarization drives tumour proliferation4,6. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity7,8 and strength9-15. Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B16 (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity17-22 that contributes to memory and learning in the healthy brain23-26. BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.


Subject(s)
Adaptation, Physiological , Glioma , Neuronal Plasticity , Synapses , Animals , Child , Humans , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Proliferation , Disease Progression , Glioma/metabolism , Glioma/pathology , Glutamic Acid/metabolism , Neurons/cytology , Neurons/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism , Receptors, AMPA/metabolism , Signal Transduction , Synapses/metabolism , Tumor Microenvironment , Optogenetics
11.
bioRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609137

ABSTRACT

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.

12.
Nature ; 618(7965): 598-606, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258682

ABSTRACT

Each tumour contains diverse cellular states that underlie intratumour heterogeneity (ITH), a central challenge of cancer therapeutics1. Dozens of recent studies have begun to describe ITH by single-cell RNA sequencing, but each study typically profiled only a small number of tumours and provided a narrow view of transcriptional ITH2. Here we curate, annotate and integrate the data from 77 different studies to reveal the patterns of transcriptional ITH across 1,163 tumour samples covering 24 tumour types. Among the malignant cells, we identify 41 consensus meta-programs, each consisting of dozens of genes that are coordinately upregulated in subpopulations of cells within many tumours. The meta-programs cover diverse cellular processes including both generic (for example, cell cycle and stress) and lineage-specific patterns that we map into 11 hallmarks of transcriptional ITH. Most meta-programs of carcinoma cells are similar to those identified in non-malignant epithelial cells, suggesting that a large fraction of malignant ITH programs are variable even before oncogenesis, reflecting the biology of their cell of origin. We further extended the meta-program analysis to six common non-malignant cell types and utilize these to map cell-cell interactions within the tumour microenvironment. In summary, we have assembled a comprehensive pan-cancer single-cell RNA-sequencing dataset, which is available through the Curated Cancer Cell Atlas website, and leveraged this dataset to carry out a systematic characterization of transcriptional ITH.


Subject(s)
Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Neoplasms , Single-Cell Gene Expression Analysis , Humans , Epithelial Cells/cytology , Epithelial Cells/metabolism , Neoplasms/classification , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment
13.
Proc Natl Acad Sci U S A ; 120(6): e2219199120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36724255

ABSTRACT

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma trials. Here, we found that ICBs induce cerebral edema in some patients and mice with glioblastoma. Through single-cell RNA sequencing, intravital imaging, and CD8+ T cell blocking studies in mice, we demonstrated that this edema results from an inflammatory response following antiprogrammed death 1 (PD1) antibody treatment that disrupts the blood-tumor barrier. Used in lieu of immunosuppressive corticosteroids, the angiotensin receptor blocker losartan prevented this ICB-induced edema and reprogrammed the tumor microenvironment, curing 20% of mice which increased to 40% in combination with standard of care treatment. Using a bihemispheric tumor model, we identified a "hot" tumor immune signature prior to losartan+anti-PD1 therapy that predicted long-term survival. Our findings provide the rationale and associated biomarkers to test losartan with ICBs in glioblastoma patients.


Subject(s)
Glioblastoma , Animals , Mice , Glioblastoma/pathology , Losartan/pharmacology , Losartan/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , CD8-Positive T-Lymphocytes , Edema , Tumor Microenvironment
14.
Front Immunol ; 14: 1297932, 2023.
Article in English | MEDLINE | ID: mdl-38213329

ABSTRACT

Background: The GL261 and CT2A syngeneic tumor lines are frequently used as immunocompetent orthotopic mouse models of human glioblastoma (huGBM) but demonstrate distinct differences in their responses to immunotherapy. Methods: To decipher the cell-intrinsic mechanisms that drive immunotherapy resistance in CT2A-luc and to define the aspects of human cancer biology that these lines can best model, we systematically compared their characteristics using whole exome and transcriptome sequencing, and protein analysis through immunohistochemistry, Western blot, flow cytometry, immunopeptidomics, and phosphopeptidomics. Results: The transcriptional profiles of GL261-luc2 and CT2A-luc tumors resembled those of some huGBMs, despite neither line sharing the essential genetic or histologic features of huGBM. Both models exhibited striking hypermutation, with clonal hotspot mutations in RAS genes (Kras p.G12C in GL261-luc2 and Nras p.Q61L in CT2A-luc). CT2A-luc distinctly displayed mesenchymal differentiation, upregulated angiogenesis, and multiple defects in antigen presentation machinery (e.g. Tap1 p.Y488C and Psmb8 p.A275P mutations) and interferon response pathways (e.g. copy number losses of loci including IFN genes and reduced phosphorylation of JAK/STAT pathway members). The defect in MHC class I expression could be overcome in CT2A-luc by interferon-γ treatment, which may underlie the modest efficacy of some immunotherapy combinations. Additionally, CT2A-luc demonstrated substantial baseline secretion of the CCL-2, CCL-5, and CCL-22 chemokines, which play important roles as myeloid chemoattractants. Conclusion: Although the clinical contexts that can be modeled by GL261 and CT2A for huGBM are limited, CT2A may be an informative model of immunotherapy resistance due to its deficits in antigen presentation machinery and interferon response pathways.


Subject(s)
Antigen Presentation , Glioblastoma , Humans , Animals , Mice , Janus Kinases , Signal Transduction , STAT Transcription Factors , Interferon-gamma , Immunotherapy
15.
Nat Genet ; 54(12): 1881-1894, 2022 12.
Article in English | MEDLINE | ID: mdl-36471067

ABSTRACT

Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in diffuse midline gliomas (DMGs) of the childhood pons but are also increasingly recognized in adults. Their potential heterogeneity at different ages and midline locations is vastly understudied. Here, through dissecting the single-cell transcriptomic, epigenomic and spatial architectures of a comprehensive cohort of patient H3-K27M DMGs, we delineate how age and anatomical location shape glioma cell-intrinsic and -extrinsic features in light of the shared driver mutation. We show that stem-like oligodendroglial precursor-like cells, present across all clinico-anatomical groups, display varying levels of maturation dependent on location. We reveal a previously underappreciated relationship between mesenchymal cancer cell states and age, linked to age-dependent differences in the immune microenvironment. Further, we resolve the spatial organization of H3-K27M DMG cell populations and identify a mitotic oligodendroglial-lineage niche. Collectively, our study provides a powerful framework for rational modeling and therapeutic interventions.


Subject(s)
Glioma , Humans , Child , Glioma/genetics , Histones/genetics , Methionine , Mutation , Racemethionine , Tumor Microenvironment/genetics
16.
Sci Adv ; 8(44): eabo5442, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36322658

ABSTRACT

Malignant peripheral nerve sheath tumor (MPNST), a highly aggressive Schwann cell (SC)-derived soft tissue sarcoma, arises from benign neurofibroma (NF); however, the identity, heterogeneity and origins of tumor populations remain elusive. Nestin+ cells have been implicated as tumor stem cells in MPNST; unexpectedly, single-cell profiling of human NF and MPNST and their animal models reveal a broad range of nestin-expressing SC lineage cells and dynamic acquisition of discrete cancer states during malignant transformation. We uncover a nestin-negative mesenchymal neural crest-like subpopulation as a previously unknown malignant stem-like state common to murine and human MPNSTs, which correlates with clinical severity. Integrative multiomics profiling further identifies unique regulatory networks and druggable targets against the malignant subpopulations in MPNST. Targeting key epithelial-mesenchymal transition and stemness regulators including ZEB1 and ALDH1A1 impedes MPNST growth. Together, our studies reveal the underlying principles of tumor cell-state evolution and their regulatory circuitries during NF-to-MPNST transformation, highlighting a hitherto unrecognized mesenchymal stem-like subpopulation in MPNST disease progression.


Subject(s)
Nerve Sheath Neoplasms , Neurofibroma , Neurofibrosarcoma , Humans , Animals , Mice , Nerve Sheath Neoplasms/pathology , Nestin , Cell Transformation, Neoplastic/genetics
18.
Cancer Discov ; 12(12): 2880-2905, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36305736

ABSTRACT

Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE: Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.


Subject(s)
Epigenome , Glioma , Animals , Humans , Mutation , Glioma/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Neoplastic Stem Cells/metabolism , Mammals/genetics , Mammals/metabolism , DNA Helicases/genetics , Nuclear Proteins/genetics
19.
Science ; 377(6614): 1519-1529, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36173860

ABSTRACT

Gain-of-function mutations in isocitrate dehydrogenase (IDH) in human cancers result in the production of d-2-hydroxyglutarate (d-2HG), an oncometabolite that promotes tumorigenesis through epigenetic alterations. The cancer cell-intrinsic effects of d-2HG are well understood, but its tumor cell-nonautonomous roles remain poorly explored. We compared the oncometabolite d-2HG with its enantiomer, l-2HG, and found that tumor-derived d-2HG was taken up by CD8+ T cells and altered their metabolism and antitumor functions in an acute and reversible fashion. We identified the glycolytic enzyme lactate dehydrogenase (LDH) as a molecular target of d-2HG. d-2HG and inhibition of LDH drive a metabolic program and immune CD8+ T cell signature marked by decreased cytotoxicity and impaired interferon-γ signaling that was recapitulated in clinical samples from human patients with IDH1 mutant gliomas.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinogenesis , Glutarates , Isocitrate Dehydrogenase , Neoplasms , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Gain of Function Mutation , Glutarates/metabolism , Humans , Interferon-gamma/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism
20.
Genome Med ; 14(1): 106, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36123598

ABSTRACT

BACKGROUND: Multiple glioblastoma studies have described a mesenchymal (MES) state, with each study defining the MES program by distinct sets of genes and highlighting distinct functional associations, including both immune activation and suppression. These variable descriptions complicate our understanding of the MES state and its implications. Here, we hypothesize that there is a range of glioma MES states, possibly reflecting distinct prior states in which a MES program can be induced, and/or distinct mechanisms that induce the MES states in those cells. METHODS: We integrated multiple published single-cell and bulk RNA sequencing datasets and MES signatures to define a core MES program that recurs across studies, as well as multiple function-specific MES signatures that vary across MES cells. We then examined the co-occurrence of these signatures and their associations with genetic and microenvironmental features. RESULTS: Based on co-occurrence of MES signatures, we found three main variants of MES states: hypoxia-related (MES-Hyp), astrocyte-related (MES-Ast), and an intermediate state. Notably, the MES states are differentially associated with genetic and microenvironmental features. MES-Hyp is preferentially associated with NF1 deletion, overall macrophage abundance, a high macrophage/microglia ratio, and M2-related macrophages, consistent with previous studies that associated MES with immune suppression. In contrast, MES-Ast is associated with T cell abundance and cytotoxicity, consistent with immune activation through expression of MHC-I/II. CONCLUSIONS: Diverse MES states occur in glioblastoma. These states share a subset of core genes but differ primarily in their association with hypoxia vs. astrocytic expression programs, and with immune suppression vs. activation, respectively.


Subject(s)
Glioblastoma , Glioma , Astrocytes/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/pathology , Humans , Hypoxia/pathology , Neoplasm Recurrence, Local/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...