Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ChemCatChem ; 10(7): 1556-1560, 2018 Apr 09.
Article in English | MEDLINE | ID: mdl-29780434

ABSTRACT

Catalytic combustion of methane, the main component of natural gas, is a challenge under lean-burn conditions and at low temperatures owing to sulfur poisoning of the Pd-rich catalyst. This paper introduces a more sulfur-resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production.

2.
Mol Pharm ; 12(11): 4038-47, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26390039

ABSTRACT

In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Polymers/chemistry , Silicon/chemistry , Animals , Antineoplastic Combined Chemotherapy Protocols/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Doxorubicin/administration & dosage , Drug Carriers/administration & dosage , Drug Liberation , HeLa Cells , Humans , Macrophages/cytology , Macrophages/drug effects , Mice , Nanocomposites/chemistry , Paclitaxel/administration & dosage , Porosity
3.
Opt Express ; 23(26): 33419-25, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26832006

ABSTRACT

We study the fabrication and optical properties of micropatterned luminescent optical epoxy samples. Five different photoluminescent materials were added to epoxy resin to form luminescent epoxies of different colors and micropatterned gratings were imprinted on the surface of the samples. The absorbance spectra of the unpatterned epoxy samples were measured with spectrometer and the luminescence intensities of all samples were measured using custom made bispectrometer. The methods used in this work offer an efficient and straightforward way to produce micro- or nanopatterned luminescent optical epoxies for various applications, such as LED coatings and solar concentrators.

4.
Langmuir ; 30(5): 1435-43, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24483340

ABSTRACT

Considerable attention is currently being devoted less to the question of whether it is possible to produce superhydrophobic polymer surfaces than to just how robust they can be made. The present study demonstrates a new route for improving the mechanical durability of water-repellent structured surfaces. The key idea is the protection of fragile fine-scale surface topographies against wear by larger scale sacrificial micropillars. A variety of surface patterns was manufactured on polypropylene using a microstructuring technique and injection molding. The surfaces subjected to mechanical pressure and abrasive wear were characterized by water contact and sliding angle measurements as well as by scanning electron microscopy and roughness analysis based on optical profilometry. The superhydrophobic polypropylene surfaces with protective structures were found to maintain their wetting properties in mechanical compression up to 20 MPa and in abrasive wear tests up to 120 kPa. For durable properties, the optimal surface density of the protective pillars was found to be about 15%. The present approach to the production of water-repellent polymer surfaces provides the advantages of mass production and mechanical robustness with practical applications of structurally functionalized surfaces.

5.
Langmuir ; 28(41): 14747-55, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23009694

ABSTRACT

Superhydrophobic polymer surfaces are typically fabricated by combining hierarchical micro-nanostructures. The surfaces have a great technological potential because of their special water-repellent and self-cleaning properties. However, the poor mechanical robustness of such surfaces has severely limited their use in practical applications. This study presents a simple and swift mass production method for manufacturing hierarchically structured polymer surfaces at micrometer scale. Polypropylene surface structuring was done using injection molding, where the microstructured molds were made with a microworking robot. The effect of the micro-microstructuring on the polymer surface wettability and mechanical robustness was studied and compared to the corresponding properties of micro-nanostructured surfaces. The static contact angles of the micro-microstructured surfaces were greater than 150° and the contact angle hysteresis was low, showing that the effect of hierarchy on the surface wetting properties works equally well at micrometer scale. Hierarchically micro-microstructured polymer surfaces exhibited the same superhydrophobic wetting properties as did the hierarchically micro-nanostructured surfaces. Micro-microstructures had superior mechanical robustness in wear tests as compared to the micro-nanostructured surfaces. The new microstructuring technique offers a precisely controlled way to produce superhydrophobic wetting properties to injection moldable polymers with sufficiently high intrinsic hydrophobicity.


Subject(s)
Nanostructures/chemistry , Polypropylenes/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Surface Properties
6.
J Chem Phys ; 136(8): 084704, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22380056

ABSTRACT

The effect of bulk BaO promoter on CO oxidation activity of palladium oxide phase was studied by density functional calculations. A series of BaO(100) supported Pd(x)O(y) thin layer models were constructed, and energy profiles for CO oxidation on the films were calculated and compared with corresponding profiles for the most stable PdO bulk surfaces PdO(100) and PdO(101). The most stable of the thin films typically exhibit the same PdO(100) and PdO(101) surface planes; the PdO(100) dominates already with double layer thickness. The supporting promoter improves the CO oxidation activity of the Pd(x)O(y) phase via a direct electronic effect and introduced structural strain and corrugation. Changes in CO adsorption strength are reflected in oxidation energy barriers, and the promoting effect of even 0.3 eV can be seen locally. Easier oxygen vacancy formation may partially facilitate the reaction.

7.
J Chem Phys ; 133(8): 084704, 2010 Aug 28.
Article in English | MEDLINE | ID: mdl-20815587

ABSTRACT

Density functional calculations were performed in order to investigate CO oxidation on two of the most stable bulk PdO surfaces. The most stable PdO(100) surface, with oxygen excess, is inert against CO adsorption, whereas strong adsorption on the stoichiometric PdO(101) surface leads to favorable oxidation via the Langmuir-Hinshelwood mechanism. The reaction with a surface oxygen atom has an activation energy of 0.66 eV, which is comparable to the lowest activation energies observed on metallic surfaces. However, the reaction rate may be limited by the coverage of molecular oxygen. Actually, the reaction with the site blocking molecular oxygen is slightly more favorable, enabling also possible formation of carbonate surface species at low temperatures. The extreme activity of strongly bonded surface oxygen atoms is more greatly emphasized on the PdO(100)-O surface. The direct reaction without adsorption, following the Eley-Rideal mechanism and taking advantage of the reaction tunnel provided by the adjacent palladium atom, has an activation energy of only 0.24 eV. The reaction mechanism and activation energy for the palladium activated CO oxidation on the most stable PdO(100)-O surface are in good agreement with experimental observations.

8.
J Mater Sci Mater Med ; 20(11): 2337-47, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19507005

ABSTRACT

The adhesion and contact guidance of human primary osteogenic sarcoma cells (Saos-2) were characterized on smooth, microstructured (MST) and micro- and nano-structured (MNST) polypropylene (PP) and on the same samples with a silicon-doped carbon nitride (C(3)N(4)-Si) coating. Injection molding was used to pattern the PP surfaces and the coating was obtained by using ultra-short pulsed laser deposition (USPLD). Surfaces were characterized using atomic force microscopy and surface energy components were calculated according to the Owens-Wendt model. The results showed C(3)N(4)-Si coated surfaces to be significantly more hydrophilic than uncoated ones. In addition, there were 86% more cells in the smooth C(3)N(4)-Si coated PP compared to smooth uncoated PP and 551%/476% more cells with MST/MNST C(3)N(4)-Si coated PP than could be obtained with MST/MNST uncoated PP. Thus the adhesion, spreading and contact guidance of osteoblast-like cells was effectively improved by combining surface texturing and deposition of osteocompatible C(3)N(4)-Si coating.


Subject(s)
Nitriles/chemistry , Polypropylenes/chemistry , Biocompatible Materials/chemistry , Carbon/chemistry , Cell Adhesion , Cell Line, Tumor , Humans , Hydrophobic and Hydrophilic Interactions , Lasers , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Nanoparticles/chemistry , Nanotechnology/methods , Nitrogen/chemistry , Osteoblasts/cytology , Silicon/chemistry , Surface Properties , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology , Time Factors
9.
Langmuir ; 24(9): 4473-7, 2008 May 06.
Article in English | MEDLINE | ID: mdl-18355102

ABSTRACT

The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.

10.
Langmuir ; 23(13): 7263-8, 2007 Jun 19.
Article in English | MEDLINE | ID: mdl-17518484

ABSTRACT

Superhydrophobic polyolefin surfaces were prepared by simultaneous micro- and nanostructuring. Electropolished aluminum foil was microstructured with a micro working robot and then anodized in polyprotic acid. The surface microstructure can be tailored by adjusting the settings of the micro working robot and the nanostructure by adjusting the parameters of the anodization procedure. Surface structuring was done by injection molding where a microstructured anodized aluminum oxide mold insert was used to pattern the surfaces. Structuring had a marked effect on the contact angle between the injection-molded polyolefins and water. When the optimized microstructure was covered with nanostructure, the static contact angle between polypropylene and water obtained a value of about 165 degrees and the sliding angle decreased to about 2.5 degrees. The superhydrophobic state was achieved.

11.
Langmuir ; 20(23): 10288-95, 2004 Nov 09.
Article in English | MEDLINE | ID: mdl-15518527

ABSTRACT

Mesoporous high surface area MCM-41 and SBA-15 type silica materials with fibrous morphology were synthesized and used as support materials for the ALCVD (atomic layer chemical vapor deposition) preparation of Co/MCM-41 and Co/SBA-15 catalysts. Co/MCM-41 and Co/SBA-15 catalysts were prepared by deposition of Co2(CO)8 from the gas phase onto the surfaces of preheated support materials in a fluidized bed reactor. For both silica materials, two different kinds of preparation methods, direct deposition and a pulse deposition method, were used. Pure silica supports as well as supported cobalt catalysts were characterized by various spectroscopic (IR) and analytical (X-ray diffraction, Brunauer-Emmett-Teller, elemental analysis) methods. MCM-41 and SBA-15 fibers showed considerable ability to adsorb Co2(CO)8 from the gas phase. For MCM-41 and SBA-15 silicas, cobalt loadings of 13.7 and 12.1 wt % were obtained using the direct deposition method. The cobalt loadings increased to 23.0 and 20.7 wt % for MCM-41 and SBA-15 silicas, respectively, when the pulse deposition method was used. The reduction behavior of silica-supported cobalt catalysts was found to depend on the catalyst preparation method and on the mesoporous structure of the support material. Almost identical reduction properties of SBA-15-supported catalysts prepared by different deposition methods are explained by the structural properties of the mesoporous support and, in particular, by the chemical structure of the inner surfaces and walls of the mesopores. Pulse O2/H2 chemisorption experiments showed catalytically promising redox properties and surface stability of the prepared MCM-41- and SBA-15-supported cobalt catalysts.

12.
J Colloid Interface Sci ; 273(2): 388-93, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15082372

ABSTRACT

The soiling of unplasticized PVC with solid and liquid oily agents was studied with tripalmitin, palmitic acid, and triolein as model compounds. Deposition was made by spin coating technique. Quantification of the soiling agent on the PVC surface was done by FTIR spectroscopy, by determining the area of the nu(C=O) vibrations as a function of the concentration of the coating solution. The C=O stretching was characteristic for each model compound. Optical microscopy in normal and polarized light and noncontact atomic force microscopy (AFM) were used to study the structure of the model compounds and their dispersion on the PVC surface. Noticeable differences in topography were seen in comparisons of the clean PVC surface with soiled surfaces. The three model compounds formed different structures on the PVC surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...