Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Biochem Pharmacol ; 205: 115256, 2022 11.
Article in English | MEDLINE | ID: mdl-36185001

ABSTRACT

Among all physiologic functions of nitric oxide (NO) known so far, NO-dependent regulation of vascular tone is one of the most important. Under physiological conditions vascular NO is mainly generated by endothelial NO-synthase (eNOS), the major isoform of NOS in the cardiovascular system. NO produced in vascular endothelial cells displays complex physiologic activities considered to be vasoprotective. Of those, the initially detected vasodilation was most rigorously investigated. Increasing the activity of eNOS by genetic approaches in mouse models, non-pharmacologic interventions such as exercise training and treatment with a variety of drugs, for example ACE-inhibitors, reduces blood pressure. Conversely, several experimental and clinical conditions reducing the activity of eNOS and/or initiating the development of endothelial dysfunction show the opposite effect. While robust evidence suggest that endothelial dysfunction occurs in overt hypertension, it is still a matter of debate whether endothelial dysfunction might be an underlying cause of essential hypertension. Therefore, investigations using transgenic mice expressing mutant eNOS enzymes as well as clinical studies demonstrating an association of hypertension with some loss-of-function alleles in the promoter and in exon 7 of the eNOS gene were highlighted in this review. It is concluded that present experimental and clinical data strongly support the view that endothelial dysfunction contributes to the well-known genetic causes of hypertension and should be considered as a pre-hypertensive treatment option.


Subject(s)
Hypertension , Nitric Oxide Synthase Type III , Animals , Mice , Nitric Oxide Synthase Type III/genetics , Blood Pressure , Nitric Oxide/pharmacology , Endothelial Cells , Hypertension/genetics , Endothelium, Vascular , Mice, Transgenic
2.
Redox Biol ; 54: 102370, 2022 08.
Article in English | MEDLINE | ID: mdl-35759945

ABSTRACT

Red blood cells (RBCs) were shown to transport and release nitric oxide (NO) bioactivity and carry an endothelial NO synthase (eNOS). However, the pathophysiological significance of RBC eNOS for cardioprotection in vivo is unknown. Here we aimed to analyze the role of RBC eNOS in the regulation of coronary blood flow, cardiac performance, and acute myocardial infarction (AMI) in vivo. To specifically distinguish the role of RBC eNOS from the endothelial cell (EC) eNOS, we generated RBC- and EC-specific knock-out (KO) and knock-in (KI) mice by Cre-induced inactivation or reactivation of eNOS. We found that RBC eNOS KO mice had fully preserved coronary dilatory responses and LV function. Instead, EC eNOS KO mice had a decreased coronary flow response in isolated perfused hearts and an increased LV developed pressure in response to elevated arterial pressure, while stroke volume was preserved. Interestingly, RBC eNOS KO showed a significantly increased infarct size and aggravated LV dysfunction with decreased stroke volume and cardiac output. This is consistent with reduced NO bioavailability and oxygen delivery capacity in RBC eNOS KOs. Crucially, RBC eNOS KI mice had decreased infarct size and preserved LV function after AMI. In contrast, EC eNOS KO and EC eNOS KI had no differences in infarct size or LV dysfunction after AMI, as compared to the controls. These data demonstrate that EC eNOS controls coronary vasodilator function, but does not directly affect infarct size, while RBC eNOS limits infarct size in AMI. Therefore, RBC eNOS signaling may represent a novel target for interventions in ischemia/reperfusion after myocardial infarction.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Nitric Oxide Synthase Type III/metabolism , Animals , Erythrocytes , Heart , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/genetics , Nitric Oxide , Nitric Oxide Synthase Type III/genetics , Vasodilator Agents
3.
Nitric Oxide ; 125-126: 69-77, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35752264

ABSTRACT

Arginase 1 (Arg1) is a ubiquitous enzyme belonging to the urea cycle that catalyzes the conversion of l-arginine into l-ornithine and urea. In endothelial cells (ECs), Arg1 was proposed to limit the availability of l-arginine for the endothelial nitric oxide synthase (eNOS) and thereby reduce nitric oxide (NO) production, thus promoting endothelial dysfunction and vascular disease. The role of EC Arg1 under homeostatic conditions is in vivo less understood. The aim of this study was to investigate the role of EC Arg1 on the regulation of eNOS, vascular tone, and endothelial function under normal homeostatic conditions in vivo and ex vivo. By using a tamoxifen-inducible EC-specific gene-targeting approach, we generated EC Arg1 KO mice. Efficiency and specificity of the gene targeting strategy was demonstrated by DNA recombination and loss of Arg1 expression measured after tamoxifen treatment in EC only. In EC Arg1 KO mice we found a significant decrease in Arg1 expression in heart and lung ECs and in the aorta, however, vascular enzymatic activity was preserved likely due to the presence of high levels of Arg1 in smooth muscle cells. Moreover, we found a downregulation of eNOS expression in the aorta, and a fully preserved systemic l-arginine and NO bioavailability, as demonstrated by the levels of l-arginine, l-ornithine, and l-citrulline as well as nitrite, nitrate, and nitroso-species. Lung and liver tissues from EC Arg1 KO mice showed respectively increase or decrease in nitrosyl-heme species, indicating that the lack of endothelial Arg1 affects NO bioavailability in these organs. In addition, EC Arg1 KO mice showed fully preserved acetylcholine-mediated vascular relaxation in both conductance and resistant vessels but increased phenylephrine-induced vasoconstriction. Systolic, diastolic, and mean arterial pressure and cardiac performance in EC Arg1 KO mice were not different from the wild-type littermate controls. In conclusion, under normal homeostatic conditions, lack of EC Arg1 expression is associated with a down-regulation of eNOS expression but a preserved NO bioavailability and vascular endothelial function. These results suggest that a cross-talk exists between Arg1 and eNOS to control NO production in ECs, which depends on both L-Arg availability and EC Arg1-dependent eNOS expression.


Subject(s)
Arginase , Nitric Oxide Synthase Type III , Animals , Arginase/genetics , Arginase/metabolism , Arginine/metabolism , Down-Regulation , Endothelial Cells/metabolism , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Ornithine , Tamoxifen/metabolism , Urea/metabolism
4.
J Cardiovasc Pharmacol Ther ; 27: 10742484221086091, 2022.
Article in English | MEDLINE | ID: mdl-35282700

ABSTRACT

Our paper highlights the past 50 years of research focusing solely on tolerance involving nitroglycerin (glyceryl trinitrate, GTN). It also identifies and discusses inconsistencies in previous mechanistic explanations that have failed to provide a way to administer GTN continuously, free of limitations from tolerance and without the requirement of a nitrate-free interval. We illustrate, for the first time in 135 years, a mechanism whereby nitric oxide, the mediator of vasodilation by GTN, may also be the cause of tolerance. Based on targeting superoxide from mitochondrial complex I, uncoupled by glutathione depletion in response to nitric oxide from GTN, a novel unit dose GTN formulation in glutathione for use as a continuous i.v. infusion has been proposed. We hypothesize that this will reduce or eliminate tolerance seen currently with i.v. GTN. Finally, to evaluate the new formulation we suggest future studies of this new formulation for the treatment of acute decompensated heart failure.


Subject(s)
Heart Failure , Nitroglycerin , Glutathione , Heart Failure/diagnosis , Heart Failure/drug therapy , Humans , Nitric Oxide , Vasodilator Agents/adverse effects
5.
Arterioscler Thromb Vasc Biol ; 41(10): 2551-2562, 2021 10.
Article in English | MEDLINE | ID: mdl-34380333

ABSTRACT

Objective: The dominant driver of arteriogenesis is elevated shear stress sensed by the endothelial glycocalyx thereby promoting arterial outward remodeling. Hyaluronan, a critical component of the endothelial glycocalyx, is synthesized by 3 HAS isoenzymes (hyaluronan synthases 1-3) at the plasma membrane. Considering further the importance of HAS3 for smooth muscle cell and immune cell functions we aimed to evaluate its role in collateral artery growth. Approach and Results: Male Has3-deficient (Has3-KO) mice were subjected to hindlimb ischemia. Blood perfusion was monitored by laser Doppler perfusion imaging and endothelial function was assessed by measurement of flow-mediated dilation in vivo. Collateral remodeling was monitored by high resolution magnetic resonance angiography. A neutralizing antibody against CD44 (clone KM201) was injected intraperitoneally to analyze hyaluronan signaling in vivo. After hindlimb ischemia, Has3-KO mice showed a reduced arteriogenic response with decreased collateral remodeling and impaired perfusion recovery. While postischemic leukocyte infiltration was unaffected, a diminished flow-mediated dilation pointed towards an impaired endothelial cell function. Indeed, endothelial AKT (protein kinase B)-dependent eNOS (endothelial nitric oxide synthase) phosphorylation at Ser1177 was substantially reduced in Has3-KO thigh muscles. Endothelial-specific Has3-KO mice mimicked the hindlimb ischemia-induced phenotype of impaired perfusion recovery as observed in global Has3-deficiency. Mechanistically, blocking selectively the hyaluronan binding site of CD44 reduced flow-mediated dilation, thereby suggesting hyaluronan signaling through CD44 as the underlying signaling pathway. Conclusions: In summary, HAS3 contributes to arteriogenesis in hindlimb ischemia by hyaluronan/CD44-mediated stimulation of eNOS phosphorylation at Ser1177. Thus, strategies augmenting endothelial HAS3 or CD44 could be envisioned to enhance vascularization under pathological conditions.


Subject(s)
Endothelial Cells/enzymology , Hindlimb/blood supply , Hyaluronan Receptors/metabolism , Hyaluronan Synthases/metabolism , Ischemia/enzymology , Neovascularization, Physiologic , Nitric Oxide Synthase Type III/metabolism , Animals , Collateral Circulation , Disease Models, Animal , Humans , Hyaluronan Synthases/genetics , Ischemia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Nitric Oxide Synthase Type III/genetics , Phosphorylation , Regional Blood Flow , Signal Transduction , Time Factors
6.
Circulation ; 144(11): 870-889, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34229449

ABSTRACT

BACKGROUND: Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) through endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of RBC eNOS compared with EC eNOS for vascular hemodynamics and nitric oxide metabolism. METHODS: We generated tissue-specific loss- and gain-of-function models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created 2 founder lines carrying a floxed eNOS (eNOSflox/flox) for Cre-inducible knockout (KO), and gene construct with an inactivated floxed/inverted exon (eNOSinv/inv) for a Cre-inducible knock-in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or in ECs (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and nitric oxide metabolism were compared ex vivo and in vivo. RESULTS: The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation, and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or flow-mediated dilation but were hypertensive. Treatment with the nitric oxide synthase inhibitor Nγ-nitro-l-arginine methyl ester further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. Although both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs than in EC eNOS KOs. Reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOSinv/inv mice, whereas the levels of bound NO were restored only in RBC eNOS KI mice. CONCLUSIONS: These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.


Subject(s)
Blood Pressure/physiology , Endothelial Cells/metabolism , Erythrocytes/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Acetylcholine/pharmacology , Animals , Aortic Diseases/drug therapy , Arginine/analogs & derivatives , Arginine/pharmacology , Blood Pressure/drug effects , Erythrocyte Count/methods , Hypertension/metabolism , Hypertension/physiopathology , Mice
7.
Am J Cardiovasc Drugs ; 21(6): 589-593, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33748918

ABSTRACT

The purpose of this current opinion article is to illustrate a novel approach to the treatment of acute decompensated heart failure (ADHF) in coronavirus disease 2019 (COVID-19) patients. The approach described herein relies on a reformulation of intravenous nitroglycerin in 5% glutathione, itself novel, and is felt to have the potential to not only improve the rate of resolution of ADHF, but also reduce the risk of complications of heart failure seen in patients with COVID-19.


Subject(s)
COVID-19/complications , Heart Failure/diagnosis , Heart Failure/etiology , Nitroglycerin/therapeutic use , Vasodilator Agents/therapeutic use , Administration, Intravenous , Drug Compounding , Glutathione/chemistry , Humans , Infusions, Intravenous , Nitroglycerin/chemistry , Vasodilator Agents/chemistry
8.
J Cardiovasc Pharmacol ; 77(1): 1-3, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33079828

ABSTRACT

ABSTRACT: The involvement of the vascular endothelium in the complications of coronavirus disease 2019 is now recognized. Chief among these are pulmonary endotheliitis, cytokine storm, endotoxic shock, and cardiovascular collapse. This Perspectives article is focused on therapeutical strategies to reduce the risk of these complications by targeting the vascular endothelium as a part of the overall treatment of coronavirus disease 2019.


Subject(s)
COVID-19/metabolism , Cytokine Release Syndrome/metabolism , Drug Delivery Systems/methods , Endothelium, Vascular/metabolism , Angiotensin II/administration & dosage , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Cytokine Release Syndrome/drug therapy , Drug Delivery Systems/trends , Endothelium, Vascular/drug effects , Humans , COVID-19 Drug Treatment
9.
Basic Res Cardiol ; 115(4): 43, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533377

ABSTRACT

Anaemia is frequently present in patients with acute myocardial infarction (AMI) and contributes to an adverse prognosis. We hypothesised that, besides reduced oxygen carrying capacity, anaemia is associated with (1) red blood cell (RBC) dysfunction and a reduced circulating nitric oxide (NO) pool, (2) compensatory enhancement of vascular and cardiac endothelial nitric oxide synthase (eNOS) activity, and (3) contribution of both, RBC dysfunction and reduced circulatory NO pool to left ventricular (LV) dysfunction and fatal outcome in AMI. In mouse models of subacute and chronic anaemia from repeated mild blood loss the circulating NO pool, RBC, cardiac and vascular function were analysed at baseline and in reperfused AMI. In anaemia, RBC function resulted in profound changes in membrane properties, enhanced turnover, haemolysis, dysregulation of intra-erythrocytotic redox state, and RBC-eNOS. RBC from anaemic mice and from anaemic patients with acute coronary syndrome impaired the recovery of contractile function of isolated mouse hearts following ischaemia/reperfusion. In anaemia, the circulating NO pool was reduced. The cardiac and vascular adaptation to anaemia was characterised by increased arterial eNOS expression and activity and an eNOS-dependent increase of end-diastolic left ventricular volume. Endothelial dysfunction induced through genetic or pharmacologic reduction of eNOS-activity abrogated the anaemia-induced cardio-circulatory compensation. Superimposed AMI was associated with decreased survival. In summary, moderate blood loss anaemia is associated with severe RBC dysfunction and reduced circulating NO pool. Vascular and cardiac eNOS are crucial for the cardio-circulatory adaptation to anaemia. RBC dysfunction together with eNOS dysfunction may contribute to adverse outcomes in AMI.


Subject(s)
Adaptation, Physiological/physiology , Anemia/physiopathology , Erythrocytes/pathology , Heart/physiopathology , Nitric Oxide/blood , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/physiopathology , Anemia/blood , Animals , Arteries/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/blood , Myocardial Infarction/physiopathology , Nitric Oxide Synthase Type III/metabolism
10.
Neuropharmacology ; 143: 327-338, 2018 12.
Article in English | MEDLINE | ID: mdl-30219501

ABSTRACT

Histaminergic (HA) neurons located in the tuberomamillary nucleus (TMN) of the posterior hypothalamus fire exclusively during waking and support many physiological functions. We investigated the role of the endovanilloid N-oleoyldopamine (OLDA) in TMN, where dopamine synthesis and its conjugation with oleic acid likely occur. We show that several known targets of OLDA including TRPV1 and cannabinoid receptors are expressed in HA neurons. In contrast to capsaicin, which failed to increase firing of HA neurons in TRPV1 knockout mice (TRPVI KO), OLDA was still able to induce excitation. This excitation was not sensitive to the blockade of cannabinoid receptors 1 and 2 and could result from OLDA interaction with GPR119, as the ligand of GPR119, oleoylethanolamide (OEA), also increased the firing of HA neurons. However, we ruled out this possibility as OEA- (but not OLDA-) excitation was abolished by the PPAR (peroxisome proliferator activated receptor) alpha antagonist MK886. The dopamine uptake blocker nomifensine blanked OLDA-excitation and dopamine receptor antagonists abolished the OLDA action in TRPV1 KO mice. Therefore OLDA excites HA neurons through multiple targets suggesting a central role of the histaminergic system in the behavioral stimulation seen after systemic OLDA application.


Subject(s)
Dopamine/analogs & derivatives , Histamine/metabolism , Hypothalamic Area, Lateral/drug effects , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Animals , Dopamine/pharmacology , Hypothalamic Area, Lateral/cytology , Hypothalamic Area, Lateral/growth & development , Hypothalamic Area, Lateral/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Patch-Clamp Techniques , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Tissue Culture Techniques
11.
Front Physiol ; 9: 332, 2018.
Article in English | MEDLINE | ID: mdl-29867516

ABSTRACT

The main function of red blood cells (RBCs) is the transport of respiratory gases along the vascular tree. To fulfill their task, RBCs are able to elastically deform in response to mechanical forces and, pass through the narrow vessels of the microcirculation. Decreased RBC deformability was observed in pathological conditions linked to increased oxidative stress or decreased nitric oxide (NO) bioavailability, like hypertension. Treatments with oxidants and with NO were shown to affect RBC deformability ex vivo, but the mechanisms underpinning these effects are unknown. In this study we investigate whether changes in intracellular redox status/oxidative stress or nitrosation reactions induced by reactive oxygen species (ROS) or NO may affect RBC deformability. In a case-control study comparing RBCs from healthy and hypertensive participants, we found that RBC deformability was decreased, and levels of ROS were increased in RBCs from hypertensive patients as compared to RBCs from aged-matched healthy controls, while NO levels in RBCs were not significantly different. To study the effects of oxidants on RBC redox state and deformability, RBCs from healthy volunteers were treated with increasing concentrations of tert-butylhydroperoxide (t-BuOOH). We found that high concentrations of t-BuOOH (≥ 1 mM) significantly decreased the GSH/GSSG ratio in RBCs, decreased RBC deformability and increased blood bulk viscosity. Moreover, RBCs from Nrf2 knockout (KO) mice, a strain genetically deficient in a number of antioxidant/reducing enzymes, were more susceptible to t-BuOOH-induced impairment in RBC deformability as compared to wild type (WT) mice. To study the role of NO in RBC deformability we treated RBC suspensions from human volunteers with NO donors and nitrosothiols and analyzed deformability of RBCs from mice lacking the endothelial NO synthase (eNOS). We found that NO donors induced S-nitrosation of the cytoskeletal protein spectrin, but did not affect human RBC deformability or blood bulk viscosity; moreover, under unstressed conditions RBCs from eNOS KO mice showed fully preserved RBC deformability as compared to WT mice. Pre-treatment of human RBCs with nitrosothiols rescued t-BuOOH-mediated loss of RBC deformability. Taken together, these findings suggest that NO does not affect RBC deformability per se, but preserves RBC deformability in conditions of oxidative stress.

12.
Oxid Med Cell Longev ; 2018: 8309698, 2018.
Article in English | MEDLINE | ID: mdl-29854098

ABSTRACT

The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch that controls the expression of antioxidant and cytoprotective enzymes, including enzymes catalyzing glutathione de novo synthesis. In this study, we aimed to analyze whether Nrf2 deficiency influences antioxidative capacity, redox state, NO metabolites, and outcome of myocardial ischemia reperfusion (I/R) injury. In Nrf2 knockout (Nrf2 KO) mice, we found elevated eNOS expression and preserved NO metabolite concentrations in the aorta and heart as compared to wild types (WT). Unexpectedly, Nrf2 KO mice have a smaller infarct size following myocardial ischemia/reperfusion injury than WT mice and show fully preserved left ventricular systolic function. Inhibition of NO synthesis at onset of ischemia and during early reperfusion increased myocardial damage and systolic dysfunction in Nrf2 KO mice, but not in WT mice. Consistent with this, infarct size and diastolic function were unaffected in eNOS knockout (eNOS KO) mice after ischemia/reperfusion. Taken together, these data suggest that eNOS upregulation under conditions of decreased antioxidant capacity might play an important role in cardioprotection against I/R. Due to the redundancy in cytoprotective mechanisms, this fundamental antioxidant property of eNOS is not evident upon acute NOS inhibition in WT mice or in eNOS KO mice until Nrf2-related signaling is abrogated.


Subject(s)
NF-E2-Related Factor 2/genetics , Nitric Oxide Synthase Type II/genetics , Animals , Aorta/metabolism , Cardiomegaly/diagnostic imaging , Glutathione/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , NF-E2-Related Factor 2/deficiency , Nitrates/metabolism , Nitric Oxide Synthase Type II/deficiency , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Ultrasonography , Ventricular Function, Left/physiology
13.
Curr Med Chem ; 25(34): 4457-4474, 2018.
Article in English | MEDLINE | ID: mdl-29521199

ABSTRACT

Moderate exercise training is a key aspect of primary and secondary prevention strategies. Shear-induced upregulation of eNOS activity and function in the vascular endothelium is considered as one of the main molecular mechanisms of exercise-induced protection against myocardial ischemia/ reperfusion (I/R) injury. It has been reported that levels of plasma nitrite, which are largely dependent on eNOS activity, were increased in healthy subjects after acute exercise, while this increase was abolished in coronary artery disease (CAD) patients. Our group and others demonstrated that RBCs contain a functional eNOS, which contributes to systemic nitrite homeostasis and to cardioprotection; moreover, expression and activity of red cell eNOS are decreased in CAD patients and significantly correlated with flow-mediated dilation, a diagnostic marker of endothelial function. Therefore, in addition to vascular eNOS, also red cell eNOS (or in more general terms NO metabolic activity of RBCs) may play a role in exercise-dependent changes of NO-bioavailability. In this review, we will focus on what is known and what is unknown about the role of RBCs in exercise-dependent cardioprotection with emphasis on RBC signaling and red cell eNOS. In detail, we will discuss the effects and molecular mechanisms of shear stress and exercise training on RBC signaling and function, review how these changes may influence blood rheology and systemic hemodynamics and highlight the potential role of red cell eNOS-mediated cardiovascular protection induced by physical activity against myocardial injury in animal and human studies and in clinical settings.


Subject(s)
Erythrocytes/metabolism , Exercise , Nitric Oxide Synthase Type III/metabolism , Connexins/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Coronary Artery Disease/prevention & control , Erythrocytes/cytology , Humans , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Nitric Oxide/metabolism , Shear Strength , Signal Transduction
14.
Br J Pharmacol ; 175(10): 1607-1620, 2018 05.
Article in English | MEDLINE | ID: mdl-29465763

ABSTRACT

BACKGROUND AND PURPOSE: Non-allergic angio-oedema is a life-threatening disease mediated by activation of bradykinin type 2 receptors (B2 receptors). The aim of this study was to investigate whether activation of B2 receptors by endogenous bradykinin contributes to physiological extravasation. This may shed new light on the assumption that treatment with an angiotensin converting enzyme inhibitor (ACEi) results in an alteration in the vascular barrier function predisposing to non-allergic angio-oedema. EXPERIMENTAL APPROACH: We generated a new transgenic mouse model characterized by endothelium-specific overexpression of the B2 receptor (B2tg ) and established a non-invasive two-photon laser microscopy approach to measure the kinetics of spontaneous extravasation in vivo. The B2tg mice showed normal morphology and litter size as compared with their transgene-negative littermates (B2n ). KEY RESULTS: Overexpression of B2 receptors was functional in conductance vessels and resistance vessels as evidenced by B2 receptor-mediated aortic dilation to bradykinin in presence of non-specific COX inhibitor diclofenac and by significant hypotension in B2tg respectively. Measurement of dermal extravasation by Miles assay showed that bradykinin induced extravasation was significantly increased in B2tg as compared with B2n . However, neither endothelial overexpression of B2 receptors nor treatment with the ACEi moexipril or B2 antagonist icatibant had any effect on spontaneous extravasation measured by two-photon laser microscopy. CONCLUSIONS AND IMPLICATIONS: Activation of B2 receptors does not appear to be involved in spontaneous extravasation. Therefore, the assumption that treatment with an ACEi results in an alteration in the physiological vascular barrier function predisposing to non-allergic angio-oedema is not supported by our findings.


Subject(s)
Edema/metabolism , Receptor, Bradykinin B2/metabolism , Skin/metabolism , Animals , Bradykinin/blood , Bradykinin/metabolism , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Bradykinin B2/genetics
15.
Antioxid Redox Signal ; 26(16): 917-935, 2017 06 01.
Article in English | MEDLINE | ID: mdl-27927026

ABSTRACT

SIGNIFICANCE: In this review, we discuss the role of nitric oxide (NO) as a key physiological mechanotransducer modulating both local and systemic heterocellular communication and contributing to the integrated (patho)physiology of the cardiovascular system. A deeper understanding of mechanotransduction-mediated local and systemic nodes controlling heterocellular communication between the endothelium, blood cells, and other cell types (e.g., cardiomyocytes) may suggest novel therapeutic strategies for endothelial dysfunction and cardiovascular disease. Recent Advances: Mechanical forces acting on mechanoreceptors on endothelial cells activate the endothelial NO synthase (eNOS) to produce NO. NO participates in (i) abluminal heterocellular communication, inducing vasorelaxation, and thereby regulating vascular tone and blood pressure; (ii) luminal heterocellular communication, inhibiting platelet aggregation, and controlling hemostasis; and (iii) systemic heterocellular communication, contributing to adaptive physiological processes in response to exercise and remote ischemic preconditioning. Interestingly, shear-induced eNOS-dependent activation of vascular heterocellular communication constitutes the molecular basis of all methods applied in the clinical routine for evaluation of endothelial function. Critical Issues and Future Directions: The integrated physiology of heterocellular communication is still not fully understood. Dedicated experimental models are needed to analyze messengers and mechanisms underpinning heterocellular communication in response to physical forces in the cardiovascular system (and elsewhere). Antioxid. Redox Signal. 26, 917-935.


Subject(s)
Endothelial Cells/cytology , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Animals , Cell Communication , Endothelial Cells/enzymology , Humans , Mechanotransduction, Cellular , Stress, Mechanical
16.
J Hypertens ; 35(1): 76-88, 2017 01.
Article in English | MEDLINE | ID: mdl-27861245

ABSTRACT

OBJECTIVES: Endothelial dysfunction and oxidative stress are associated with hypertension but whether endothelial superoxide may play a role in the early development of essential hypertension remains uncertain. We investigated whether endothelial nitric oxide synthase (eNOS)-derived endothelial oxidative stress is involved in the regulation of SBP. METHODS: Wild-type eNOS [mice with endothelium-specific overexpression of bovine endothelial NO-synthase (eNOS-Tg)] or a novel dimer-destabilized eNOS-mutant harboring a partially disrupted zinc-finger [mice with endothelium-specific overexpression of destabilized bovine eNOS destabilized by replacement of Cys 101 to Ala (C101A-eNOS-Tg)] was introduced in C57BL/6 in an endothelial-specific manner. Mice were monitored for aortic endothelium-dependent relaxation, SBP, levels of superoxide and several posttranslational modifications indicating activity and/or increased vascular oxidative stress. Some groups of mice underwent voluntary exercise training for 4 weeks or treatment with the superoxide dismutase mimetic Tempol. RESULTS: C101A-eNOS-Tg showed significantly increased superoxide generation, protein-tyrosine-nitration and eNOS-tyrosine-nitration, eNOS-S-glutathionylation, eNOS phosphorylation and AMP kinase-α phosphorylation at Thr172 in aorta, skeletal muscle, left ventricular myocardium and lung as compared with eNOS-Tg and wild-type controls. Exercise training increased phosphorylation of eNOS at Ser and AMP kinase-α in wild-type. These physiologic adaptations were absent in C101A-eNOS-Tg. Maximal aortic endothelium-dependent relaxation was similar in all strains. C101A-eNOS-Tg displayed normal SBP despite higher levels of eNOS, whereas eNOS-Tg showed significant hypotension. Tempol completely reversed the occurring protein modifications and significantly reduced SBP in C101A-eNOS-Tg but not in wild-type. CONCLUSION: Oxidative stress generated by endothelial-specific expression of genetically destabilized C101A-eNOS selectively prevents SBP-reducing activity of vascular eNOS, while having no effect on aortic endothelium-dependent relaxation. These data suggest that oxidative stress in microvascular endothelium may play a role for the development of essential hypertension.


Subject(s)
Blood Pressure/genetics , Blood Pressure/physiology , Nitric Oxide Synthase Type III/chemistry , Nitric Oxide Synthase Type III/physiology , Animals , Cattle , Mice , Mice, Inbred C57BL , Mutation/genetics , Mutation/physiology , Nitric Oxide Synthase Type III/genetics , Oxidative Stress/genetics , Oxidative Stress/physiology , Phosphorylation , Protein Stability
17.
Antioxid Redox Signal ; 26(13): 718-742, 2017 05 01.
Article in English | MEDLINE | ID: mdl-27889956

ABSTRACT

SIGNIFICANCE: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. CRITICAL ISSUES: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. FUTURE DIRECTIONS: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718-742.


Subject(s)
Anemia/metabolism , Erythrocytes/metabolism , Nitric Oxide/metabolism , Animals , Humans , Oxidation-Reduction
18.
Biochem Pharmacol ; 112: 24-36, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27235748

ABSTRACT

Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity.


Subject(s)
Endothelial Cells/drug effects , Nitric Oxide Donors/pharmacology , Nitric Oxide/metabolism , Receptor, Angiotensin, Type 2/genetics , Animals , Endothelial Cells/metabolism , Enzyme Inhibitors/pharmacology , Female , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/genetics , Renin-Angiotensin System/drug effects , Swine , Up-Regulation
19.
Neuropharmacology ; 107: 100-110, 2016 08.
Article in English | MEDLINE | ID: mdl-27012889

ABSTRACT

Nicotinic acetylcholine receptor (nAChR) subtypes containing the α4 subunit, particularly α4ß2 nAChRs, play an important role in cognitive functioning. The impact of the smoking cessation aid varenicline, a selective partial α4ß2 nAChR agonist, on (1) changes of central protein and mRNA expression of this receptor and (2) on memory deficits in a mouse model of cognitive impairment was investigated. Protein and mRNA expression of both the α4 and ß2 receptor subunits in mouse brain endothelial and hippocampal cells as well as hippocampus and neocortex tissues were determined by western blot and realtime PCR, respectively. The ß2 antibody showed low specificity, though. Tissues were examined following a 2-week oral treatment with various doses of varenicline (0.01, 0.1, 1, 3 mg/kg/day) or vehicle. In addition, episodic memory of mice was assessed following this treatment with an object recognition task using (1) normal mice and (2) animals with anticholinergic-induced memory impairment (i.p. injection of 0.5 mg/kg scopolamine). Varenicline dose-dependently increased protein expression of both the α4 and ß2 subunit in cell cultures and brain tissues, respectively, but had no effect on mRNA expression of both subunits. Scopolamine injection induced a significant reduction of object memory in vehicle-treated mice. By contrast, cognitive performance was not altered by scopolamine in varenicline-treated mice. In conclusion, a 2-week oral treatment with varenicline prevented memory impairment in the scopolamine mouse model. In parallel, protein, but not mRNA expression was upregulated, suggesting a posttranscriptional mechanism. Our findings suggest a beneficial effect of varenicline on cognitive dysfunction.


Subject(s)
Brain/drug effects , Cognition/drug effects , Nootropic Agents/pharmacology , Receptors, Nicotinic/metabolism , Varenicline/pharmacology , Administration, Oral , Animals , Brain/metabolism , Cell Line , Cognition/physiology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Male , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice, Inbred C57BL , RNA, Messenger/metabolism , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Scopolamine
20.
Exp Clin Transplant ; 14(1): 86-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26862826

ABSTRACT

OBJECTIVES: Methods for conservation and preservation of vascular grafts are often controversially discussed. Furthermore, immunologic monitoring or immunotherapy for allogeneic graft is not considered necessary in many cases. The present study was initiated to examine the cellular vitality and functional efficiency of vein transplant during preservation. MATERIALS AND METHODS: Twenty-seven human vein segments (vena saphena magna) were stored after explant in University of Wisconsin solution or histidine-tryptophan-ketoglutarate solution at 4 °C. After 3, 24, 48, 72, and 96 hours, vein functionality was tested. Ring segments were fixed by triangles in Krebs-Henseleit buffer. Contractile function was measured after addition of potassium chloride solution (80 mM) and phenylephrine (0.2, 2, or 20 µM). To investigate endothelium-dependent vasorelaxation, 1 µM acetylcholine was added. RESULTS: Of 27 segments, 5 showed endothelium-dependent relaxation. Vasorelaxation continued for up to 48 hours after administration of acetylcholine in University of Wisconsin solution and for up to 24 hours in histidine-tryptophane-ketoglutarate solution. At 48 hours, potassium chloride solution-induced vasocontraction was 17% more effective than phenylephrine in University of Wisconsin solution. University of Wisconsin solution was significantly more effective than histidine-tryptophane-ketoglutarate solution in terms of preservation of phenylephrine (0.2, 2 µM)-induced vasocontraction. Phenylephrine (2 µM)-induced contraction was retained in University of Wisconsin solution after 24 hours by 81% and after 48 hours by 55%, with comparable results in histidine-tryptophane-ketoglutarate solution of only 62% and 34% after 24 and 48 hours. CONCLUSIONS: At 48 hours, human saphenous vein transplants had better endothelium and smooth muscle function when preserved in University of Wisconsin solution versus histidine-tryptophane-ketoglutarate solution.


Subject(s)
Endothelium, Vascular/drug effects , Muscle, Smooth, Vascular/drug effects , Organ Preservation Solutions/pharmacology , Saphenous Vein/drug effects , Tissue Preservation/methods , Adenosine/pharmacology , Allopurinol/pharmacology , Cold Temperature , Dose-Response Relationship, Drug , Endothelium, Vascular/transplantation , Endothelium, Vascular/ultrastructure , Glucose/pharmacology , Glutathione/pharmacology , Humans , Insulin/pharmacology , Mannitol/pharmacology , Muscle, Smooth, Vascular/transplantation , Muscle, Smooth, Vascular/ultrastructure , Potassium Chloride/pharmacology , Procaine/pharmacology , Raffinose/pharmacology , Saphenous Vein/transplantation , Saphenous Vein/ultrastructure , Time Factors , Tissue and Organ Harvesting , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...