Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38251128

ABSTRACT

This work explored the zinc nanoparticles obtained by the one-stage induction flow levitation method. A 10 kW tube generator with an operating frequency of 440 kHz was used. The process used 8 mm diameter zinc granules (2 g weight) with a purity of 99.9%. Zinc wire was fed to replace the evaporated metal from the granule surface. This method productivity was 30 g/h of nanoparticles. In addition, various methods were used to characterize the resulting nanoparticles: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray fluorescence analysis (XRF), dynamic light scattering (DLS), porosimetry and inductively coupled plasma atomic emission spectroscopy (ICP-MS). The resulting nanoparticle size, determined by SEM and porosimetry, was 350 nm, while the size of the primary crystallites was 21 nm. The amount of impurities in the resulting nanoparticles did not exceed 1000 ppm.

2.
Membranes (Basel) ; 13(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37367743

ABSTRACT

The current investigation is focused on the development of composite membranes based on polymeric ionic liquids (PILs) containing imidazolium and pyridinium polycations with various counterions, including hexafluorophosphate, tetrafluoroborate, and bis(trifluoromethylsulfonyl)imide. A combination of spectroscopic methods was used to identify the synthesized PILs and characterize their interaction with carbon dioxide. The density and surface free energy of polymers were performed by wettability measurements, and the results are in good agreement with the permeability and selectivity obtained within the gas transport tests. It was shown that the membranes with a selective layer based on PILs exhibit relatively high permeability with CO2 and high ideal selectivity CO2/CH4 and CO2/N2. Additionally, it was found that the type of an anion significantly affects the performance of the obtained membranes, with the most pronounced effect from bis-triflimide-based polymers, showing the highest permeability coefficient. These results provide valuable insights into the design and optimization of PIL-based membranes for natural and flue gas treatment.

3.
Membranes (Basel) ; 13(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36984657

ABSTRACT

The present paper deals with the complex study of CO2 capture from combined heat power plant flue gases using the efficient technological design of a membrane cascade type of «Continuous Membrane Column¼ for binary gas mixture separation. In contrast to well-known multi-step or multi-stage process designs, the cascade type of separation unit provides several advantages. Here, the separation process is implemented in it by creating two counter current flows. In one of them is depleted by the high-permeable component in a continuous mode, meanwhile the other one is enriched. Taking into account that the circulating flows rate overcomes the withdrawn one, there is a multiplicative increase in separation efficiency. A comprehensive study of CO2 capture using the membrane cascade type of «Continuous Membrane Column¼ includes the determination of the optimal membrane material characteristics, the sensitivity study of the process, and a feasibility evaluation. It was clearly demonstrated that the proposed process achieves efficient CO2 capture, which meets the modern requirements in terms of the CO2 content (≥95 mol.%), recovery rate (≥90%), and residual CO2 concentration (≤2 mol.%). Moreover, it was observed that it is possible to process CO2 with a purity of up to 99.8 mol.% at the same recovery rate. This enables the use of this specific process design in CO2 pretreatment operations for the production of high-purity carbon dioxide.

4.
Membranes (Basel) ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837741

ABSTRACT

Herein, we report for the first time a study dedicated to acidic gases' solubility in ionic liquids with sterically hindered bulky anion, namely bis(2-ethylhexyl) sulfosuccinate ([doc]), experimentally evaluated at low pressures. The effect of cation change (imidazolium, pyridinium, and pyrrolidinium) on the thermophysical properties and sorption capacities was also discussed. The densities and the activation energies of the tested ILs exhibited minor differences. Furthermore, the COSMO-RS model was used to predict the free volumes of ILs aiming to investigate its influence on gas solubilities. The conducted calculations have revealed an antibate correlation between the fractional free volume (FFV) and Henry's law constant. In particular, the lowest FFV in 1-methylimidazolium [doc] corresponded to the minimal sorption and vice versa. In addition, it was shown that the presence of protic cation results in a significant reduction in CO2 and H2S solubilities. In general, the solubility measurement results of the synthesized ILs have shown their superiority compared to fluorinated ILs based on the physical absorption mechanism.

5.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203238

ABSTRACT

A mesoporous silica support was synthesized using the sol-gel method from trichlorosilane. There is a tendency for the specific surface area and the proportion of silica particles mesopores to increase during all stages of sol-gel synthesis. It has been shown that the insertion of hexane and toluene, as additional solvents, into the structure-forming polyethylene glycol, makes it possible to regulate the pore size and specific surface area of silica. Silica functionalization was carried out using SILP technology. The activities of the catalytic systems based on polymer and inorganic supports immobilized by imidazole-based ionic liquids during the trichlorosilane disproportionation reaction were compared. There is a tendency for the monosilane yield for catalytic systems based on an inorganic support to increase. We identified the most promising catalyst in terms of monosilane yield and proposed a bifunctional catalyst that exhibited activity in two parallel reactions: trichlorosilane disproportionation and silicon tetrachloride hydrogenation.


Subject(s)
Ionic Liquids , Silanes , Silicon Dioxide
6.
J Chromatogr A ; 1560: 71-77, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-29778446

ABSTRACT

The current study focuses on the processes involved during the flow conversion of water into acetylene in a calcium carbide reaction cell for the trace moisture analysis of ammonia by reaction gas chromatography. The factors negatively affecting the reproducibility and the accuracy of the measurements are suggested and discussed. The intramolecular reaction of the HOCaCCH intermediate was found to be a side reaction producing background acetylene during the contact of wet ammonia gas with calcium carbide. The presence of the HOCaCCH intermediate among the reaction products is confirmed by an FTIR spectral study of calcium carbide powder exposed to wet gas. The side reaction kinetics is evaluated experimentally and its influence on the results of the gas chromatographic measurements is discussed in relation to the determination of the optimal operating parameters for ammonia analysis. The reaction gas chromatography method for the trace moisture measurements in an ammonia matrix was experimentally compared to an FTIR long-path length gas cell technique to evaluate the accuracy limitations and the resource intensity.


Subject(s)
Acetylene/analogs & derivatives , Ammonia/analysis , Ammonia/chemistry , Chromatography, Gas/methods , Water/analysis , Water/chemistry , Acetylene/chemistry
7.
J Chromatogr A ; 1447: 129-34, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27083259

ABSTRACT

A novel method for rapid, quantitative determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia by dual-channel two-dimensional GC-PDHID is presented. An improved matrix back-flush-to-vent approach combining back-flush column switching technique with auxiliary NaHSO4 ammonia trap is described. The NaHSO4 trap prevents traces of ammonia from entering the analytical column and is shown not to affect the impurity content of the sample. The approach allows shortening the analysis time and increasing the amount of measurements without extensive maintenance of the GC-system. The performance of the configuration has been evaluated utilizing ammonia- and helium-based calibration standards. The method has been applied for the analysis of 99.9999+% ammonia purified by high-pressure distillation at the production site.


Subject(s)
Ammonia/analysis , Calibration , Carbon Dioxide/analysis , Chromatography, Gas/methods , Chromatography, Gas/standards , Helium
SELECTION OF CITATIONS
SEARCH DETAIL
...