Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Kidney Int ; 95(3): 680-692, 2019 03.
Article in English | MEDLINE | ID: mdl-30712924

ABSTRACT

Noninvasive biomarkers of disease activity are needed to monitor response to therapy and predict disease recurrence in patients with glomerulonephritis. The leukocyte surface markers integrin Mac-1 and CD16b have been implicated in the pathogenesis of lupus nephritis (LN). Mac-1 comprises a unique α subunit (CD11b) complexed with a common ß2 subunit, which are released along with CD16b from specific leukocyte subsets under inflammatory conditions including glomerulonephritis. We investigated the association of urinary CD11b and CD16b with histopathological activity in 272 patients with biopsy-proven glomerular diseases, including 118 with LN. Urine CD11b and CD16b were measured via enzyme-linked immunosorbent assay. Urinary levels of both markers were increased in LN, but only urinary CD11b was correlated with the number of glomerular leukocytes and with overall histopathological activity. In a subset of patients with samples available from the time of biopsy and subsequent clinical remission of LN, urinary levels of CD11b decreased with successful glucocorticoid treatment. Receiver-operating characteristic curve analysis demonstrated that urinary CD11b was superior to CD16b, the scavenger receptor CD163, and monocyte chemotactic protein-1 for the prediction of proliferative LN. In anti-mouse nephrotoxic serum glomerulonephritis, urinary CD11b correlated with histologic damage and decreased with corticosteroid treatment. In vitro, CD11b levels were decreased on activated mouse neutrophils displaying Fcγ receptor clustering and transendothelial migration, suggesting that leukocyte activation and transmigration are required for CD11b shedding in urine. Together, our results suggest that urinary CD11b may be a useful biomarker to estimate histopathological activity, particularly glomerular leukocyte accumulation, in LN.


Subject(s)
CD11b Antigen/analysis , Kidney Glomerulus/immunology , Lupus Nephritis/diagnosis , Adult , Aged , Animals , Biomarkers/analysis , CD11b Antigen/immunology , Disease Models, Animal , Female , GPI-Linked Proteins/immunology , GPI-Linked Proteins/urine , Glucocorticoids/therapeutic use , Humans , Kidney Glomerulus/cytology , Kidney Glomerulus/pathology , Lupus Nephritis/drug therapy , Lupus Nephritis/urine , Male , Mice , Middle Aged , Neutrophils/immunology , ROC Curve , Receptors, IgG/immunology , Young Adult
2.
Mol Neurobiol ; 56(6): 4203-4214, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30291583

ABSTRACT

Adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV serotype 9, is highly permeable to the blood-brain barrier. A major obstacle to the systemic use of AAV-PHP.B is the generation of neutralizing antibodies (NAbs); however, temporal profiles of NAb production after exposure to AAV-PHP.B, and the influence on later AAV-PHP.B administration, remains unknown. To address these, AAV-PHP.Bs expressing either GFP or mCherry by neuron-specific or astrocyte-specific promoters were intravenously administered to mice at various intervals, and brain expression was examined. Injection of two AAV-PHP.Bs, separated temporally, showed that as little as a 1-day interval between injections resulted in a significant decrease in expression of the second transgene, with a complete loss of expression after 7 days, paralleling an increase in serum NAb titers. Brain parenchymal injection was explored to circumvent the presence of NAbs. Mice systemically pre-treated with an AAV-PHP.B were injected intra-cerebrally with an AAV-PHP.B expressing GFP. After 2 weeks, marked GFP expression in the cerebellum was evident, showing that pre-existing NAbs did not affect the AAV-PHP.B directly injected into the brain. In contrast, reversing the injection order, i.e., cerebellar injection followed by systemic injection, completely eliminated expression of the second transgene. We confirmed that intra-cerebellar injection produced NAbs in the serum, but not in the cerebrospinal fluid (CSF). Our results indicate that the preclusion of brain transduction by a second AAV-PHP.B administration begins from the first day following systemic injection and is established within 1 week. Serum NAbs can be avoided by directly injecting AAV-PHP.Bs into brain tissue.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Central Nervous System/metabolism , Dependovirus/metabolism , Transduction, Genetic , Animals , Antibodies, Neutralizing/administration & dosage , Astrocytes/metabolism , Brain/drug effects , Brain/metabolism , Cyclosporine/pharmacology , Injections , Luminescent Proteins/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Promoter Regions, Genetic/genetics , Staining and Labeling , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...