Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 458: 140260, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944927

ABSTRACT

The study aimed to assess the extent to which protein aggregation, and even the modality of aggregation, can affect gastric digestion, down to the nature of the hydrolyzed peptide bonds. By controlling pH and ionic strength during heating, linear or spherical ovalbumin (OVA) aggregates were prepared, then digested with pepsin. Statistical analysis characterized the peptide bonds specifically hydrolyzed versus those not hydrolyzed for a given condition, based on a detailed description of all these bonds. Aggregation limits pepsin access to buried regions of native OVA, but some cleavage sites specific to aggregates reflect specific hydrolysis pathways due to the denaturation-aggregation process. Cleavage sites specific to linear aggregates indicate greater denaturation compared to spherical aggregates, consistent with theoretical models of heat-induced aggregation of OVA. Thus, the peptides released during the gastric phase may vary depending on the aggregation modality. Precisely tuned aggregation may therefore allow subtle control of the digestion process.

2.
Food Chem ; 362: 130098, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34090041

ABSTRACT

The specificity of pepsin, the major protease of gastric digestion, has been previously investigated, but only regarding the primary sequence of the protein substrates. The present study aimed to consider in addition physicochemical and structural characteristics, at the molecular and sub-molecular scales. For six different proteins submitted to in vitro gastric digestion, the peptide bonds cleaved were determined from the peptides released and identified by LC-MS/MS. An original statistical approach, based on propensity scores calculated for each amino acid residue on both sides of the peptide bonds, concluded that preferential cleavage occurred after Leu and Phe, and before Ile. Moreover, reliable statistical models developed for predicting peptide bond cleavage, highlighted the predominant role of the amino acid residues at the N-terminal side of the peptide bonds, up to the seventh position (P7 and P7'). The significant influence of hydrophobicity, charge and structural constraints around the peptide bonds was also evidenced.


Subject(s)
Pepsin A/metabolism , Proteins/metabolism , Amino Acid Sequence , Amino Acids , Chromatography, Liquid , Endopeptidases/metabolism , Models, Statistical , Peptides/metabolism , Proteins/chemistry , Proteolysis , Substrate Specificity , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...