Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 159: 385-396, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31121406

ABSTRACT

Organic fouling is still elusive in seawater reverse osmosis (SWRO) desalination process. Classifying organics in seawater will provide an in-depth understanding of the important fraction on RO fouling. In this study, dissolved organic matter (DOM) in seawater was fractionated and concentrated by membrane technique into three major fractions (i.e., biopolymer fraction, humic substance with building block fraction, and low molecular weight fraction) by their molecular weight (MW) according to the definitions in liquid chromatography with organic carbon detection (LC-OCD) method. Overall recovery of >80% was attained. The isolated organic fractions were compared with common model foulants such as sodium alginate (SA), bovine serum albumin (BSA), and humic acid (HA), in terms of chemical analyses using fluorescence-excitation emission matrix (FEEM) and LC-OCD, as well as their fouling potentials. SWRO fouling experiments were carried out and fouling mechanism was investigated by atomic force microscopy (AFM) method and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. Results showed that initial fouling (i.e., foulant-membrane interaction) was the main driver in SWRO organic fouling with biopolymer fraction as the major contributor followed by low molecular weight fraction. In addition, divalent ions was found to enhance the RO fouling by increasing the adhesion and cohesion forces between foulant-membrane and foulant-foulant.


Subject(s)
Membranes, Artificial , Water Purification , Filtration , Humic Substances , Osmosis , Seawater
2.
Water Res ; 154: 72-83, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30771709

ABSTRACT

In this study, permeate quality, membrane performance, and microbial community in a gravity-driven microfiltration (GDM) reactor and a biofiltration (BF) + GDM reactor for seawater reverse osmosis (RO) desalination pretreatment were compared at both lab-scale and pilot-scale. The presence of BF column was more efficient in removing soluble organic substances by biosorption/biodegradation, leading to superior permeate quality from BF + GDM and subsequently lower RO fouling than GDM. Compared to the biofilm-saturated anthracite media, the granular activated carbon media in BF improved the assimilable organic substances removal in BF + GDM. Although less organic substances and microbial cells were accumulated on the membrane in BF + GDM, its permeate flux was 10-20% lower than GDM. Furthermore, BF lowered the amounts and diversity of prokaryotes (due to less organic substances) and eukaryotes (due to BF media rejection and lacking of prokaryotic preys) in the membrane biofilm of BF + GDM, but did not cause significant shifts of predominant species. Thus, the lower flux in BF + GDM was attributed to the limited predation and movement of eukaryotes in membrane biofilm, which may result in the formation of less porous and compact biofilm layer. The cost analysis indicated that BF + GDM-RO requires 5.2% less operating cost and 1.5% less water production cost than GDM-RO.


Subject(s)
Water Purification , Filtration , Membranes, Artificial , Osmosis , Seawater
3.
Chemosphere ; 220: 107-115, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30579947

ABSTRACT

The presence of transparent exopolymer particles (TEP) in water bodies has been related to several adverse impacts in various water treatment processes. In recent years, there have been an increasing number of publications relating to TEP. Unfortunately, this increased interest in TEP measurement has not been accompanied by significant improvement in the analysis method or TEP monitoring. Currently, the most common method to analyze and quantify TEP only allows offline, and often offsite measurement, causing delays and slow response times. This paper introduces an improved method for TEP monitoring using a membrane-based spectrophotometric technique to quantify TEP in various water bodies. The proposed TEP monitor involves a crossflow filtration unit, reagent injection and a spectrophotometer system. The TEP retained on the membrane surface is stained by Alcian blue and the amount deposited is quantified directly using an optic fibre reflectance probe coupled with a spectrophotometer. The novel method shows a linear relationship with various concentrations of Xanthan gum (a model representing TEP). When tested with various water samples, the proposed method was found to correlate well with the conventional method. Several advantages of this novel method are shorter analysis time, increased accuracy, and the potential to be further developed into an online system.


Subject(s)
Environmental Monitoring/methods , Extracellular Polymeric Substance Matrix , Water Pollutants/analysis , Alcian Blue , Filtration/methods , Membranes, Artificial , Polysaccharides/analysis , Spectrophotometry
4.
Biofouling ; 34(2): 123-131, 2018 02.
Article in English | MEDLINE | ID: mdl-29268634

ABSTRACT

A fluid dynamic gauging (FDG) technique was used for on-line and in situ measurements of Pseudomonas aeruginosa PAO1 biofilm thickness and strength on flat sheet polyethersulphone membranes. The measurements are the first to be successfully conducted in a membrane cross-flow filtration system under constant permeation. In addition, FDG was used to demonstrate the removal behaviour of biofilms through local biofilm strength and removal energy estimation, which other conventional measurements such as flux and TMP cannot provide. The findings suggest that FDG can provide valuable additional information related to biofilm properties that have not been measured by other monitoring methods.


Subject(s)
Biofilms , Biofouling/prevention & control , Filtration/methods , Membranes, Artificial , Pseudomonas aeruginosa/growth & development , Water Purification/methods
5.
Water Res ; 114: 59-68, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28226250

ABSTRACT

As a low energy and chemical free process, gravity-driven membrane (GDM) filtration has shown a potential for seawater pretreatment in our previous studies. In this study, a pilot submerged GDM reactor (effective volume of 720 L) was operated over 250 days and the permeate flux stabilized at 18.6 ± 1.4 L/m2h at a hydrostatic pressure of 40 mbar. This flux was higher than those in the lab-scale GDM reactor (16.3 ± 0.2 L/m2h; effective volume of 8.4 L) and in the filtration cell system (2.7 ± 0.6 L/m2h; feed side volume of 0.0046 L) when the same flat sheet membrane was used. Interestingly, when the filtration cell was submerged into the GDM reactor, the flux (17.2 L/m2h) was comparable to the submerged membrane module. Analysis of cake layer morphology and foulant properties indicated that a thicker but more porous cake layer with less accumulation of organic substances (biopolymers and humics) contributed to the improved permeate flux. This phenomenon was possibly associated with longer residence time of organic substances and sufficient space for the growth, predation, and movement of the eukaryotes in the GDM reactor. In addition, the permeate flux of the submerged hollow fibre membrane increased with decreasing packing density. It is thought that the movement of large-sized eukaryotes could be limited when the space between hollow fibres was reduced. In terms of pretreatment, the GDM systems effectively removed turbidity, viable cells, and transparent exopolymer particles from the feed seawater. Importantly, extending the reactor operation time produced a permeate with less assimilable organic carbon and biopolymers. Thus, the superior quality of the GDM permeate has the potential to alleviate subsequent reverse osmosis membrane fouling for seawater treatment.


Subject(s)
Filtration , Water Purification , Eukaryota , Gravitation , Membranes, Artificial , Seawater/chemistry
6.
Biofouling ; 29(3): 319-30, 2013.
Article in English | MEDLINE | ID: mdl-23528128

ABSTRACT

Pseudomonas aeruginosa PAO1 wild type and a mucoid derivative (FRD1) which over produces alginate were used to foul reverse osmosis (RO) membranes. When operated at a constant flux, biofilm formation on the RO membrane resulted in a slow rise in transmembrane pressure (TMP) of 22% for the initial four days of operation, followed by a sharp increase of 159% over the following two days. The initial slow increase in TMP was probably due to the formation of a biofilm on the membrane surface, which then accelerated the rate of biofouling through the effect of concentration polarization. At later stages of operation, most of the bacterial biomass consisted of dead cells. The amount of extracellular polymeric substances appeared to correlate positively with the number of dead cells. The results indicate that prolonging the initial stage of slow TMP increase and avoiding the latter stage of accelerated TMP increase would provide a sustainable operation of the RO system. These results suggest that nutrient limitation could reduce biofilm accumulation and delay the increase in TMP.


Subject(s)
Biofilms , Biofouling/prevention & control , Membranes, Artificial , Osmosis , Pseudomonas aeruginosa/physiology , Alginates/metabolism , Bacterial Load , Bioreactors , Glucuronic Acid/metabolism , Hexuronic Acids/metabolism , Microbial Viability , Polysaccharides, Bacterial/metabolism , Pressure , Pseudomonas aeruginosa/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...