Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioanalysis ; 16(8): 249-278, 2024.
Article in English | MEDLINE | ID: mdl-38466891

ABSTRACT

Aim: In this study, we evaluated the greenness and whiteness scores for microextraction techniques used in therapeutic drug monitoring. Additionally, the cons and pros of each evaluated method and their impacts on the provided scores are also discussed. Materials & methods: The Analytical Greenness Sample Preparation metric tool and white analytical chemistry principles are used for related published works (2007-2023). Results & conclusion: This study provided valuable insights for developing methods based on microextraction techniques with a balance in greenness and whiteness areas. Some methods based on a specific technique recorded higher scores, making them suitable candidates as green analytical approaches, and some others achieved high scores both in green and white areas with a satisfactory balance between principles.


[Box: see text].


Subject(s)
Drug Monitoring , Green Chemistry Technology , Liquid Phase Microextraction , Solid Phase Microextraction , Drug Monitoring/methods , Solid Phase Microextraction/methods , Liquid Phase Microextraction/methods , Humans , Pharmaceutical Preparations/analysis
2.
Chem Zvesti ; 77(2): 619-655, 2023.
Article in English | MEDLINE | ID: mdl-36213319

ABSTRACT

Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.

3.
Mikrochim Acta ; 189(7): 255, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697898

ABSTRACT

Over recent years, great efforts have been extensively documented in top scientific journals on the development of methods for early diagnosis, treatment, and monitoring of cancers which are prevalent critical diseases with a high mortality rate among men and women. The determination of cancer biomarkers using different optimum methodologies is one of the finest options for achieving these goals with more precision, speed, and at a lower cost than traditional clinical procedures. In this regard, while focusing on specific biomarkers, molecularly imprinted technology has enabled novel diagnostic techniques for a variety of diseases. Due to the well-known advantages of molecularly imprinted polymers (MIPs), this review focuses on the current trends of MIPs-based extraction/microextraction methods, specifically targeting cancer biomarkers from various matrices. These optimized methods have demonstrated high selectivity, accuracy, sorbent reusability, extraction recovery, and low limits of detection and quantification for a variety of cancer biomarkers, which are a powerful tool to provide early diagnosis, prognosis, and treatment monitoring, with potential clinical application expected soon. This review highlights the key progress, specific modifications, and strategies used for MIP synthesis. The future perspectives for cancer biomarkers purification and determination by fabricating MIP-based techniques are also discussed.


Subject(s)
Molecular Imprinting , Neoplasms , Biomarkers, Tumor , Female , Humans , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Neoplasms/diagnosis , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...