Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Viruses ; 16(3)2024 03 08.
Article in English | MEDLINE | ID: mdl-38543783

ABSTRACT

Despite the rapid development of vaccines against COVID-19, they have important limitations, such as safety issues, the scope of their efficacy, and the induction of mucosal immunity. The present study proposes a potential component for a new generation of vaccines. The recombinant nucleocapsid (N) protein from the SARS-CoV-2 Delta variant was combined with the ODN-39M, a synthetic 39 mer unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), used as an adjuvant. The evaluation of its immunogenicity in Balb/C mice revealed that only administration by intranasal route induced a systemic cross-reactive, cell-mediated immunity (CMI). In turn, this combination was able to induce anti-N IgA in the lungs, which, along with the specific IgG in sera and CMI in the spleen, was cross-reactive against the nucleocapsid protein of SARS-CoV-1. Furthermore, the nasal administration of the N + ODN-39M preparation, combined with RBD Delta protein, enhanced the local and systemic immune response against RBD, with a neutralizing capacity. Results make the N + ODN-39M preparation a suitable component for a future intranasal vaccine with broader functionality against Sarbecoviruses.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , Humans , Administration, Intranasal , Nucleocapsid Proteins , Vaccines, Combined , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Immunity, Mucosal , Adjuvants, Immunologic , Antibodies, Viral , Antibodies, Neutralizing
2.
Vaccine ; 41(40): 5892-5900, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37599141

ABSTRACT

Zika virus infection continues to be a global concern for human health due to the high-risk association of the disease with neurological disorders and microcephaly in newborn. Nowadays, no vaccine or specific antiviral treatment is available, and the development of safe and effective vaccines is yet a challenge. In this study, we obtained a novel subunit vaccine that combines two regions of zika genome, domain III of the envelope and the capsid, in a chimeric protein in E. coli bacteria. The recombinant protein was characterized with polyclonal anti-ZIKV and anti-DENV antibodies that corroborate the specificity of the molecule. In addition, the PBMC from zika-immune donors stimulated with the ZEC recombinant antigen showed the capacity to recall the memory T cell response previously generated by the natural infection. The chimeric protein ZEC was able to self-assemble after combination with an immunomodulatory specific oligonucleotide to form aggregates. The inoculation of BALB/c mice with ZEC aggregated and not aggregated form of the protein showed a similar humoral immune response, although the aggregated variant induced more cell-mediated immunity evaluated by in vitro IFNγ secretion. In this study, we propose a novel vaccine candidate against the zika disease based on a recombinant protein that can stimulate both arms of the immune system.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Animals , Mice , Capsid , Escherichia coli , Leukocytes, Mononuclear , Capsid Proteins/genetics , Immunity, Cellular , Zika Virus Infection/prevention & control , Recombinant Proteins , Recombinant Fusion Proteins
3.
Arch Virol ; 168(7): 190, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37351679

ABSTRACT

Due to the rapid development of new variants of SARS-CoV-2 as well as the real threat of new coronavirus zoonosis events, the development of a preventive vaccine with a broader scope of functionality is highly desirable. Previously, we reported the functionality of a nasal formulation containing the nucleocapsid protein and the receptor-binding domain (RBD) of the spike protein of the Delta variant of SARS-CoV-2 combined with the ODN-39M adjuvant. This combination induced cross-reactive immunity in mucosal and systemic compartments at the sarbecovirus level. In the present study, we explored the magnitude of the immunity generated in BALB/c mice by the same formulation with alum added as an additional adjuvant, to enhance the humoral immunity against the two antigens. Animals were immunized with three doses of the bivalent formulation, administered by subcutaneous route. Humoral immunity was tested by ELISA, and the neutralizing capacity of the resulting antibodies (Abs) was evaluated using a surrogate test and a vesicular stomatitis virus (VSV) pseudovirus-based assay. Cell-mediated immunity was also investigated using an IFN-γ ELISpot assay. High levels of antibodies against both antigens (N and RBD) were obtained upon immunization. Anti-RBD Abs with neutralizing capacity reacted with the RBD of three SARS-CoV-2 variants tested, including Omicron. Abs recognizing the nucleocapsid proteins of SARS-CoV-1 and the SARS-CoV-2 Delta and Omicron variants were also detected. Taken together, these results suggest that this bivalent formulation could be an attractive component of a pancorona vaccine able to broaden the scope of humoral immunity against both antigens. This will be particularly important for the reinforcement of immunity in previously vaccinated and/or infected populations.


Subject(s)
COVID-19 , Immunity, Humoral , Animals , Mice , SARS-CoV-2/genetics , Antibodies , Adjuvants, Immunologic , Mice, Inbred BALB C , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
4.
Viral Immunol ; 36(3): 222-228, 2023 04.
Article in English | MEDLINE | ID: mdl-36735580

ABSTRACT

Since the beginning of the pandemic, the pre-existing immunity against SARS-CoV-2 has been postulated as one possible cause of asymptomatic infections. Later, various works reported that pre-existing immune response against the two structural conserved antigens: S2 subunit and the nucleocapsid protein, were associated to some level of asymptomatic profile in infected individuals. To explore the Ab background against these two antigens, in the context of vaccine-elicited and hybrid (natural infection plus vaccination induced) immunity of SARS-CoV-2, in this work, we tested sera from inactivated vaccine-immunized donors and from vaccinated and subsequent natural infected donors upon the Omicron variant wave in Guangdong province, China. Serum samples were collected from 27 COVID-19 convalescent, 25 SARS-CoV-2 vaccinated, and 10 negative donors. The IgG cross-reactivity response against these two antigens from another relevant human coronavirus (HCoV) was also evaluated. The findings indicate that IgG response against S2 and N protein was particularly higher in sera with hybrid immunity. The cross-reactive Abs were more significant against SARS-CoV-1, while a wide cross-reactivity was detected for N antigen for one human Alpha coronavirus HCoV-229E even in the negative control samples. The presence of cross-reactive Abs against the two conserved antigens N and S2, particularly in the context of hybrid immunity, could pave the way for future boosted vaccines carrying these conserved regions.


Subject(s)
Blood Group Antigens , COVID-19 , Humans , SARS-CoV-2 , COVID-19/prevention & control , Immunoglobulin G , Spike Glycoprotein, Coronavirus , Antibodies, Viral
5.
Vaccine ; 40(8): 1162-1169, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35078661

ABSTRACT

Since the beginning of the COVID-19 pandemic, the development of effective vaccines against this pathogen has been a priority for the scientific community. Several strategies have been developed including vaccines based on recombinant viral protein fragments. The receptor-binding domain (RBD) in the S1 subunit of S protein has been considered one of the main targets of neutralizing antibodies. In this study we assess the potential of a vaccine formulation based on the recombinant RBD domain of SARS-CoV-2 expressed in the thermophilic filamentous fungal strain Thermothelomyces heterothallica and the hepatitis B virus (HBV) core protein. Functional humoral and cellular immune responses were detected in mice. To our knowledge, this is the first report on the immune evaluation of a biomedical product obtained in the fungal strain T. heterothallica. These results together with the intrinsic advantages of this expression platform support its use for the development of biotechnology products for medical purpose.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Cellular , Mice , Mice, Inbred BALB C , Pandemics , SARS-CoV-2
6.
J Gen Virol ; 100(6): 975-984, 2019 06.
Article in English | MEDLINE | ID: mdl-31090533

ABSTRACT

The development of live-attenuated vaccines against Dengue virus (DENV) has been problematic. Dengvaxia, licensed in several countries where DENV is endemic, has shown low efficacy profiles and there are safety concerns prohibiting its administration to children younger than 9 years old, and the live-attenuated tetravalent vaccine (LATV) developed by NIAID has proven too reactogenic during clinical trialing. In this work we examined whether the combination of TV005, a LATV-derived formulation, with Tetra DIIIC, a subunit vaccine candidate based on fusion proteins derived from structural proteins from all four DENV serotypes, can overcome the respective limitations of these two vaccine approaches. Rhesus macaques were first primed with one or two doses of Tetra DIIIC and then boosted with TV005, following the time course of the appearance of virus-binding and neutralizing antibodies, and evaluating protection by means of a challenge experiment with wild-type viruses. Although the two evaluated prime-boost regimes were equivalent to a single administration of TV005 in terms of the development of virus-binding and neutralizing antibodies as well as the protection against viral challenge, both regimes reduced vaccine viremia to undetectable levels. Thus, the combination of Tetra DIIIC with TV005 offers a potential solution to the reactogenicity problems, which have beset the development of the latter vaccine candidate.


Subject(s)
Dengue Virus/immunology , Dengue/immunology , Recombinant Fusion Proteins/immunology , Vaccines, Attenuated/immunology , Animals , Antibodies, Neutralizing/immunology , Cell Line , Chlorocebus aethiops , Dengue/virology , Female , Immunization/methods , Immunization, Secondary/methods , Macaca mulatta , Male , Vero Cells
7.
Clin Transl Immunology ; 6(6): e148, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28748091

ABSTRACT

Tetra DIIIC is a vaccine candidate against dengue virus (DENV) composed by four chimeric proteins that fuse the domain III of the envelope protein of each virus to the corresponding capsid protein. Containing B- and T-cell epitopes, these proteins form aggregates after the incubation with an immunostimulatory oligodeoxynucleotide, and their tetravalent formulation induces neutralizing antibodies and cellular immune response in mice and monkeys. Also, Tetra DIIIC protects mice after challenge with each DENV, and the monovalent formulation obtained from DENV-2 protects monkeys upon homologous viral challenge. However, in the last years, new evidences have arisen regarding domain III of DENV envelope protein as irrelevant target for neutralizing antibodies in humans. Nevertheless, vaccination with domain III induces a neutralizing antibody response that confers protection against re-infection. In addition, it has been demonstrated that the induction of a cellular immune response is essential to protect during the infection. This response can also avoid severe manifestations of dengue disease, associated to the antibody-dependent enhancement of the infection. In this study, we observed that Tetra DIIIC was able to boost the antiviral and neutralizing antibody responses previously generated in monkeys during an experimental DENV infection, demonstrating that domain III is targeted by B cells during the viral infection. Additionally, Tetra DIIIC successfully boosted the cellular immune response generated by the viruses, probably against T-cells epitopes in the capsid proteins. These results highlight the functionality of Tetra DIIIC as a vaccine candidate against DENV.

8.
Arch Virol ; 162(8): 2247-2256, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28393307

ABSTRACT

Tetra DIIIC is a subunit vaccine candidate based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus. This vaccine preparation contains the DIIIC proteins aggregated with a specific immunostimulatory oligodeoxynucleotide (ODN 39M). Tetra DIIIC has already been shown to be immunogenic and protective in mice and monkeys. In this study, we evaluated the immunogenicity in mice of several formulations of Tetra DIIIC containing different amounts of the recombinant proteins. The Tetra DIIIC formulation induced a humoral immune response against the four DENV serotypes, even at the lowest dose assayed. In contrast, the highest level of cell-mediated immunity, measured as frequency of IFNγ-producing cells, was detected in animals immunized with the lowest dose. The protective capacity of the tetravalent formulations was assessed using the mouse model of dengue virus encephalitis. Upon challenge, vaccinated mice showed significantly reduced virus replication in all tested groups. This study provides new information about the functionality of Tetra DIIIC as a vaccine candidate and also supports the crucial role of cell-mediated immunity in protection against dengue virus.


Subject(s)
Antibodies, Viral/blood , Capsid Proteins/immunology , Dengue Vaccines/immunology , Dengue/prevention & control , Immunity, Humoral , Animals , Antibodies, Neutralizing/blood , Brain/virology , Capsid Proteins/genetics , Chlorocebus aethiops , Dengue Virus , Disease Models, Animal , Dose-Response Relationship, Immunologic , Female , Immunity, Cellular , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , Vaccines, Subunit/immunology , Vero Cells , Viremia
9.
J Immunol ; 197(9): 3597-3606, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27683751

ABSTRACT

Despite the considerable effort that has been invested in elucidating the mechanisms of protection and immunopathogenesis associated with dengue virus infections, a reliable correlate of protection against the disease remains to be found. Neutralizing Abs, long considered the prime component of a protective response, can exacerbate disease severity when present at subprotective levels, and a growing body of data is challenging the notion that their titers are positively correlated with disease protection. Consequently, the protective role of cell-mediated immunity in the control of dengue infections has begun to be studied. Although earlier research implicated cellular immunity in dengue immunopathogenesis, a wealth of newer data demonstrated that multifunctional CD8+ T cell responses are instrumental for avoiding the more severe manifestations of dengue disease. In this article, we describe a new tetravalent vaccine candidate based on recombinant dengue virus capsid proteins, efficiently produced in Escherichia coli and purified using a single ion-exchange chromatography step. After aggregation to form nucleocapsid-like particles upon incubation with an oligodeoxynucleotide containing immunostimulatory CpG motifs, these Ags induce, in mice and monkeys, an IFN-γ-secreting cell response that significantly reduces viral load after challenge without the contribution of antiviral Abs. Therefore, this new vaccine candidate may not carry the risk for disease enhancement associated with Ab-based formulations.


Subject(s)
Antibodies, Neutralizing/immunology , CD8-Positive T-Lymphocytes/immunology , Dengue Virus/physiology , Dengue/immunology , Interferon-gamma/metabolism , Viral Vaccines/immunology , Virion/immunology , Animals , CD8-Positive T-Lymphocytes/virology , Disease Models, Animal , Haplorhini , Humans , Immunity, Cellular , Mice , Nucleocapsid Proteins/immunology , Viral Load
10.
Immunol Lett ; 176: 51-6, 2016 08.
Article in English | MEDLINE | ID: mdl-27233365

ABSTRACT

Despite the many efforts made by the scientific community in the development of vaccine candidates against dengue virus (DENV), no vaccine has been licensed up to date. Although the immunopathogenesis associated to the disease is a key factor to take into account by vaccine developers, the lack of animal models that reproduce the clinical signs of the disease has hampered the vaccine progress. Non-human primates support viral replication, but they are very expensive and do not show signs of disease. Immunocompromised mice develop viremia and some signs of the disease; however, they are not valuable for vaccine testing. Nowadays, immunocompetent mice are the most used model to evaluate the immunogenicity of vaccine candidates. These animals are resistant to DENV infection; therefore, the intracranial inoculation with neuroadapted virus, which provokes viral encephalitis, represents an alternative to evaluate the protective capacity of vaccine candidates. Previous results have demonstrated the crucial role of cellular immune response in the protection induced by the virus and vaccine candidates in this mouse encephalitis model. However, in the present work we are proposing that the magnitude of the cell-mediated immunity and the inflammatory response generated by the vaccine can modulate the survival rate after viral challenge. We observed that the intracranial challenge of naïve mice with DENV-2 induces the recruitment of immune cells that contribute to the reduction of viral load, but does not increase the survival rate. On the contrary, animals treated with cyclophosphamide, an immunosuppressive drug that affects proliferating lymphocytes, had a higher viral load but a better survival rate than untreated animals. These results suggest that the immune system is playing an immunopathogenic role in this model and the survival rate may not be a suitable endpoint in the evaluation of vaccine candidates based on antigens that induce a strong cellular immune response.


Subject(s)
Cyclophosphamide/therapeutic use , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/immunology , Encephalitis/immunology , Immunosuppressive Agents/therapeutic use , Animals , Cells, Cultured , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Immunity, Cellular , Immunocompetence , Mice , Mice, Inbred BALB C , Vero Cells , Viral Load
11.
Arch Virol ; 161(2): 465-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26590068

ABSTRACT

There are several dengue vaccine candidates at advanced stages of development, but none of them are licensed. Despite the reactogenicity and immunogenicity profile in humans of the tetravalent ChimeriVax™ dengue vaccine candidate, in efficacy trials, it has failed to confer complete protection against dengue virus (DENV)-1 and DENV-2. However, full protection against the four serotypes had been observed previously in monkeys immunized with this vaccine candidate. Some authors have tried to explain this contradiction by hypothesizing that protection rates in non-human primates (NHPs) are associated with a lack of post-challenge anamnestic immune responses. Here, we studied the protection and anamnestic response patterns after homologous challenge in NHPs previously infected with DENV-2. Two immunization schemes were used, varying the viral doses and the intervals between them. Animals developed immunity against DENV-2 that provided full protection against reinfection with a homologous virus. However, all monkeys showed a significant increase in antiviral and neutralizing antibody titers after challenge. Our results suggest that sterilizing immunity could not be induced by infection with the virus despite the lack of detectable viremia in some animals in which an increase in antibody titer was observed. For this reason, we propose that the lack of an anamnestic neutralizing antibody response after challenge, as suggested by some authors, should be carefully reviewed as a criterion for evaluating the functionality of vaccine candidates.


Subject(s)
Dengue Virus/immunology , Dengue/veterinary , Primate Diseases/prevention & control , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Chlorocebus aethiops , Dengue/immunology , Dengue/prevention & control , Immunologic Memory
12.
Int Immunol ; 27(8): 367-79, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25795768

ABSTRACT

Our group developed a subunit vaccine candidate against dengue virus based on two different viral regions: the domain III of the envelope protein and the capsid protein. The novel chimeric protein from dengue-2 virus [domain III-capsid (DIIIC-2)], when presented as aggregated incorporating oligodeoxynucleotides, induced anti-viral and neutralizing antibodies, a cellular immune response and conferred significant protection to mice and monkeys. The remaining constructs were already obtained and properly characterized. Based on this evidence, this work was aimed at assessing the immune response in mice of the chimeric proteins DIIIC of each serotype, as monovalent and tetravalent formulations. Here, we demonstrated the immunogenicity of each protein in terms of humoral and cell-mediated immunity, without antigen competition on the mixture forming the formulation tetra DIIIC. Accordingly, significant protection was afforded as measured by the limited viral load in the mouse encephalitis model. The assessment of the tetravalent formulation in non-human primates was also conducted. In this animal model, it was demonstrated that the formulation induced neutralizing antibodies and memory cell-mediated immune response with IFN-γ-secreting and cytotoxic capacity, regardless the route of immunization used. Taken together, we can assert that the tetravalent formulation of DIIIC proteins constitutes a promising vaccine candidate against dengue virus, and propose it for further efficacy experiments in monkeys or in the dengue human infection model, as it has been recently proposed.


Subject(s)
Antibodies, Viral/biosynthesis , Capsid Proteins/immunology , Dengue Vaccines/administration & dosage , Dengue Virus/immunology , Dengue/prevention & control , Recombinant Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/biosynthesis , Capsid Proteins/administration & dosage , Capsid Proteins/chemistry , Capsid Proteins/genetics , Chlorocebus aethiops , Dengue/immunology , Dengue/virology , Dengue Vaccines/biosynthesis , Dengue Vaccines/immunology , Female , Gene Expression , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunization , Mice , Mice, Inbred BALB C , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/immunology , Protein Structure, Tertiary , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Vaccines, Subunit , Viral Load/drug effects
13.
Immunol Cell Biol ; 93(1): 57-66, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25178969

ABSTRACT

Previously, we reported the ability of the chimeric protein DIIIC-2 (domain III of the dengue envelope protein fused to the capsid protein of dengue-2 virus), to induce immunity and protection in mice, when it is highly aggregated with a non-defined oligodeoxynucleotide (ODN) and adjuvanted in alum. In this work, three different defined ODNs were studied as aggregating agents. Our results suggest that the nature of the ODN influences the capacity of protein DIIIC-2 to activate cell-mediated immunity in mice. Consequently, the ODN 39M was selected to perform further experiments in mice and nonhuman primates. Mice receiving the preparation 39M-DIIIC-2 were solidly protected against dengue virus (DENV) challenge. Moreover, monkeys immunized with the same preparation developed neutralizing antibodies, as measured by four different neutralization tests varying the virus strains and the cell lines used. Two of the immunized monkeys were completely protected against challenge, whereas the third animal had a single day of low-titer viremia. This is the first work describing the induction of short-term protection in monkeys by a formulation that is suitable for human use combining a recombinant protein from DENV with alum.


Subject(s)
Antibodies, Viral/biosynthesis , Capsid Proteins/immunology , Dengue Virus/immunology , Dengue/prevention & control , Recombinant Fusion Proteins/immunology , Viral Envelope Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Capsid Proteins/genetics , Chlorocebus aethiops , Dengue/immunology , Dengue/virology , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Dengue Vaccines/immunology , Dengue Virus/chemistry , Female , Flocculation , Gene Expression , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunization , Mice , Mice, Inbred BALB C , Neutralization Tests , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/immunology , Protein Binding , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Viral Envelope Proteins/genetics
14.
Virology ; 456-457: 70-6, 2014 May.
Article in English | MEDLINE | ID: mdl-24889226

ABSTRACT

The role of cellular immune response in dengue virus infection is not yet fully understood. Only few studies in murine models propose that CD8(+) T-cells are associated with protection from infection and disease. At the light of recent reports about the protective role of CD8(+) T-cells in humans and the no correlation between neutralizing antibodies and protection observed in several studies, a vaccine based on cell-mediated immunity constitute an attractive approach. Our group has developed a capsid-based vaccine as nucleocpasid-like particles from dengue-2 virus, which induced a protective CD4(+) and CD8(+) cell-mediated immunity in mice, without the contribution of neutralizing antibodies. Herein we evaluated the immunogenicity and protective efficacy of this molecule in monkeys. Neither IgG antibodies against the whole virus nor neutralizing antibodies were elicited after the antigen inoculation. However, animals developed a cell-mediated immunity, measured by gamma interferon secretion and cytotoxic capacity. Although only one out of three vaccinated animals was fully protected against viral challenge, a viral load reduction was observed in this group compared with the placebo one, suggesting that capsid could be the base on an attractive vaccine against dengue.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Capsid Proteins/immunology , Chlorocebus aethiops , Cytotoxicity, Immunologic , Dengue/immunology , Dengue Vaccines/administration & dosage , Disease Models, Animal , Female , Interferon-gamma/metabolism , Male , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Load
15.
Microbiol Immunol ; 58(4): 219-26, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24689365

ABSTRACT

A dengue vaccine must induce protective immunity against the four serotypes of the virus. Our group has developed chimeric proteins consisting of the protein P64k from Neisseria meningitidis and the domain III from the four viral envelope proteins. In this study, the immunogenicity of a tetravalent vaccine formulation using aluminum hydroxide as adjuvant was evaluated in mice. After three doses, neutralizing antibody titers were detected against the four viral serotypes, the lowest seroconversion rate being against dengue virus serotype 4. One month after the last dose, immunized animals were challenged with infective virus, and partial but statistically significant protection was found to have been achieved. Based on these results, further studies in mice and non-human primates using this tetravalent formulation in a prime-boost strategy with attenuated viruses are strongly recommended.


Subject(s)
Dengue Vaccines/administration & dosage , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Bacterial Outer Membrane Proteins/administration & dosage , Dengue/immunology , Disease Models, Animal , Female , Mice, Inbred BALB C , Survival Analysis , Vaccination/methods , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
16.
Arch Virol ; 159(7): 1629-40, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24420159

ABSTRACT

Dengue is currently one of the most important arthropod-borne diseases, causing up to 25,000 deaths annually. There is currently no vaccine to prevent dengue virus infection, which needs a tetravalent vaccine approach. In this work, we describe the cloning and expression in Escherichia coli of envelope domain III-capsid chimeric proteins (DIIIC) of the four dengue serotypes as a tetravalent dengue vaccine candidate that is potentially able to generate humoral and cellular immunity. The recombinant proteins were purified to more than 85 % purity and were recognized by anti-dengue mouse and human sera. Mass spectrometry analysis verified the identity of the proteins and the correct formation of the intracatenary disulfide bond in the domain III region. The chimeric DIIIC proteins were also serotype-specific, and in the presence of oligonucleotides, they formed aggregates that were visible by electron microscopy. These results support the future use of DIIIC recombinant chimeric proteins in preclinical studies in mice for assessing their immunogenicity and efficacy.


Subject(s)
Capsid Proteins/metabolism , Dengue Vaccines , Dengue Virus/classification , Dengue Virus/immunology , Gene Expression Regulation, Viral/physiology , Viral Envelope Proteins/metabolism , Antigens, Viral/immunology , Capsid Proteins/genetics , Cloning, Molecular , Dengue Virus/genetics , Dengue Virus/metabolism , Escherichia coli , Protein Structure, Tertiary , Recombinant Proteins/immunology , Serotyping , Viral Envelope Proteins/genetics
17.
Arch Virol ; 158(1): 225-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22983185

ABSTRACT

It was previously reported that DIIIC-2 (a fusion protein composed of domain III of the envelope protein and the capsid protein from dengue 2 virus), as an aggregate antigen from a partially purified preparation, induced a functional protective immune response against dengue 2 virus in the mouse encephalitis model. In the present work, a purification procedure was developed for DIIIC-2, and soluble and aggregated fractions of the purified protein were characterized and evaluated in mice. The purification process rendered a protein preparation of 91 % purity, and the remaining 9 % consisted of fragments and aggregates of the same recombinant protein. After the in vitro aggregation process, upon addition of oligodeoxynucleotides, 80 % of the protein formed aggregates, whereas 20 % remained as soluble protein. An immunological evaluation revealed the proper immunogenicity of the aggregated purified protein in terms of induction of antiviral and neutralizing antibodies, cell-mediated immunity and protection upon dengue 2 virus challenge in the mouse encephalitis model. Based on these results, we can assert that the purified protein DIIIC-2 is functional and could be used for further scalable steps and preclinical studies in non-human primates.


Subject(s)
Capsid Proteins/immunology , Dengue Virus/immunology , Dengue/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/immunology , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/isolation & purification , Dengue/virology , Dengue Vaccines/chemistry , Dengue Vaccines/genetics , Dengue Vaccines/immunology , Dengue Vaccines/isolation & purification , Dengue Virus/genetics , Female , Humans , Immunity, Cellular , Mice , Mice, Inbred BALB C , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/isolation & purification , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/isolation & purification
18.
Microbes Infect ; 14(11): 968-78, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22546527

ABSTRACT

No commercially live vaccine against cholera caused by Vibrio cholerae O139 serogroup is available and it is currently needed. Virulent O139 strain CRC266 was genetically modified by firstly deleting multiple copies of the filamentous phage CTXφ, further tagging by insertion of the endoglucanase A coding gene from Clostridium thermocellum into the hemagglutinin/protease gene and finally deleting the mshA gene, just to improve the vaccine biosafety. One of the derived strains designated as TLP01 showed full attenuation and good colonizing capacity in the infant mouse cholera model, as well as highly immunogenic properties in the adult rabbit and rat models. Since TLP01 lacks MSHA fimbriae, it is refractory to infection with another filamentous phage VGJφ and therefore protected of acquiring CTXφ from a recombinant hybrid VGJφ/CTXφ. This strategy could reduce the possibilities of stable reversion to virulence out of the human gut. Furthermore, this vaccine strain was impaired to produce biofilms under certain culture conditions, which might have implications for the strain survival in natural settings contributing to vaccine biosafety as well. The above results has encouraged us to consider TLP01 as a live attenuated vaccine strain having an adequate performance in animal models, in terms of attenuation and immunogenicity, so that it fulfills the requirements to be evaluated in human volunteers.


Subject(s)
Cholera Vaccines/immunology , Fimbriae Proteins/immunology , Vibrio cholerae O139/immunology , Administration, Oral , Animals , Antibodies, Bacterial/immunology , Bacterial Shedding , Base Sequence , Biofilms , Cholera/immunology , Cholera/prevention & control , Cholera Vaccines/genetics , Cholera Vaccines/pharmacology , Disease Models, Animal , Feces/microbiology , Fimbriae Proteins/genetics , Intestinal Mucosa/immunology , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Molecular Sequence Data , Rabbits , Rats , Rats, Sprague-Dawley , Sequence Alignment , Sequence Deletion/genetics , Statistics, Nonparametric , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/pharmacology , Vibrio cholerae O139/genetics
19.
Res Microbiol ; 160(1): 48-56, 2009.
Article in English | MEDLINE | ID: mdl-19015025

ABSTRACT

Pathogenesis of the facultative anaerobe Vibrio cholerae takes place at the gut under low oxygen concentrations. To identify proteins which change their expression level in response to oxygen availability, proteomes of V. cholerae El Tor C7258 grown in aerobiosis, microaerobiosis and anaerobiosis were compared by two-dimensional electrophoresis. Twenty-six differentially expressed proteins were identified which are involved in several processes including iron acquisition, alanine metabolism, purine synthesis, energy metabolism and stress response. Moreover, two proteins implicated in exopolysaccharide synthesis and biofilm formation were produced at higher levels under microaerobiosis and anaerobiosis, which suggests a role of oxygen deprivation in biofilm development in V. cholerae. In addition, six proteins encoded at the Vibrio pathogenicity island attained the highest expression levels under anaerobiosis, and five of them are required for colonization: three correspond to toxin-coregulated pilus biogenesis components, one to soluble colonization factor TcpF and one to accessory colonization factor A. Thus, anaerobiosis promotes synthesis of colonization factors in V. cholerae El Tor, suggesting that it may be a key in vivo signal for early stages of the pathogenic process of V. cholerae.


Subject(s)
Bacterial Proteins/metabolism , Genomic Islands , Proteome/metabolism , Vibrio cholerae/metabolism , Anaerobiosis , Bacterial Proteins/genetics , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Bacterial , Oxygen/metabolism , Proteome/genetics , Vibrio cholerae/genetics , Vibrio cholerae/pathogenicity
20.
Res Microbiol ; 159(2): 81-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18222649

ABSTRACT

Restriction fragment length polymorphism analyses of the array of CTXPhi prophages in strains CRC262 and CRC266 of Vibrio cholerae O139 revealed the presence of copies of complete CTXPhi and pre-CTXPhi prophages coexisting at a single chromosomal locus in each strain. Restriction pattern and comparative nucleotide sequence analysis revealed pre-CTXPhi precursors of both the El Tor and Calcutta lineages. Thus, we hypothesize that two precursor variants independently acquired cholera toxin genes and gave rise to the current El Tor and Calcutta CTXPhi prophages. We discuss the implications of these results in terms of the evolution and origin of the current diversity of CTXPhi prophages.


Subject(s)
Prophages/genetics , Prophages/isolation & purification , Vibrio cholerae O139/virology , Virus Integration , Base Sequence , Cholera Toxin/genetics , DNA, Viral/analysis , DNA, Viral/genetics , Gene Dosage , India , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Prophages/classification , Prophages/physiology , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...