Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e14631, 2023.
Article in English | MEDLINE | ID: mdl-36650837

ABSTRACT

The ability to actively track posture using visual targets as indicators is important for improving impairments in whole-body coordination, and accurate visual feedback on tasks is considered effective in promoting sensory-motor integration and behavioral success. In the present study, we examined inter- and intramuscular modulation between the two lower limbs in response to visual perturbation. Sixteen healthy young subjects (age: 21.3 ± 0.7 years) were asked to move their weight back and forth while tracking a visual target displayed on a monitor in front of them for 30 s. Three types of target movements were examined: a sinusoidal wave (i.e., a predictable pattern), more complex patterns (random), and no movement (stationary). Electromyography (EMG) was used to assess intra- and intermuscular coherence modulation of the plantar flexor muscles (right and left soleus and right and left medial gastrocnemius). The ability to adjust posture to follow the target signal was assessed using a stabilometer. Inter- and intramuscular coherence increased during the visual perturbation task compared to the stationary task. In addition, left-right differences in lower limb modulation were observed during the visual perturbation task. Furthermore, interlimb coherence was related to the motor accuracy of tracking. The muscles of both lower limbs cooperated in response to visual perturbation, suggesting that these muscles control visually induced anteroposterior postural sway. Since such visual perturbations promote coordination between both lower extremities, this relationship may indicate the potential for rehabilitation training to help individuals acquire and improve the motor functions necessary to efficiently and stably perform activities of daily living.


Subject(s)
Activities of Daily Living , Movement , Humans , Young Adult , Lower Extremity , Movement/physiology , Muscle, Skeletal/physiology , Posture/physiology
2.
Geriatrics (Basel) ; 6(4)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34940339

ABSTRACT

Our aim was to clarify the effect of aging on the coherence of electromyograms of plantar flexor pairs during bipedal stance and to clarify the relationship between coherence and center-of-mass acceleration (COMacc). The subjects were 16 adults and 18 older adults. Intra- and intermuscular coherence and phase analyses were used to analyze the muscle pairs of bilateral and unilateral plantar flexor muscle groups. The relationship between coherence value and anterior-posterior COMacc of the plantar flexor muscle pairs was also examined to determine whether the connectivity of the lower limb muscle pairs is functionally important. The older adults showed higher coherence in the frequency range of 0-4 Hz for muscle pairs than the younger adults. In phase analysis, the older adults showed a phase difference between bilateral heteronymous muscle pairs in the frequency range of 0-6 Hz, which was one of the characteristics not seen in the younger adults. Correlation analysis showed that all the muscle pairs were moderately correlated with COMacc in the older adults. Not only does aging affects the organization of the bilateral and unilateral postural muscle activity of the plantar flexors during bipedal stance, but such organization may also be related to the increased COMacc characteristics of older adults.

3.
Somatosens Mot Res ; 38(4): 294-302, 2021 12.
Article in English | MEDLINE | ID: mdl-34496708

ABSTRACT

PURPOSE: Coordinated movements of both lower limbs may be a clinically important indicator of motor control during quiet standing. From a neurological point of view, it is known that extensive coupling of muscles must be coordinated an upright posture. However, movement coordination between the lower limbs is the final motor output, is unknown. In this study, we focussed on the ground reaction force (GRF) vector and clarified the time and frequency characteristics of the force vectors of both lower limbs. MATERIALS AND METHODS: A total of 16 healthy young adults and 18 healthy older adults participated and placed each bare foot on one of two force plates to measure the GRF vectors (i.e., anteroposterior, mediolateral, and vertical) of each lower limb and determine the centre of mass (COM) acceleration in the anteroposterior direction (COMacc). Characteristics of the coordination of both lower limbs during movements were analysed using coherence analysis and cross-correlation function analysis (CCF). RESULTS: The coherence levels of the force vectors of both lower limbs were higher in all three directions and significantly increased in the older adults. CCF analysis showed that the force vectors of both lower limbs were negatively correlated at the zero-time lag. Moreover, a weak correlation was observed between COMacc and coherence values. CONCLUSIONS: The assessment of bilateral lower limb connectivity using force vectors can be used as an evaluation method to reflect changes in the ability to control bipedal standing during ageing.


Subject(s)
Lower Extremity , Postural Balance , Aged , Aging , Humans , Movement , Young Adult
4.
Brain Sci ; 11(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669827

ABSTRACT

Imitation has been proven effective in motor development and neurorehabilitation. However, the relationship between imitation and interhemispheric inhibition (IHI) remains unclear. Transcranial magnetic stimulation (TMS) can be used to investigate IHI. In this study, the modification effects of IHI resulting from mirror neuron system (MNS) activation during different imitations are addressed. We measured IHI between homologous primary motor cortex (M1) by analyzing the ipsilateral silent period (iSP) evoked by single-pulse focal TMS during imitation and analyzed the respective IHI modulation during and after different patterns of imitation. Our main results showed that throughout anatomical imitation, significant time-course changes of iSP duration through the experiment were observed in both directions. iSP duration declined from the pre-imitation time point to the post-imitation time point and did not return to baseline after 30 min rest. We also observed significant iSP reduction from the right hemisphere to the left hemisphere during anatomical and specular imitation, compared with non-imitative movement. Our findings indicate that using anatomical imitation in action observation and execution therapy promotes functional recovery in neurorehabilitation by regulating IHI.

5.
Front Syst Neurosci ; 15: 802148, 2021.
Article in English | MEDLINE | ID: mdl-35126063

ABSTRACT

The sense of body ownership, the feeling that one's own body belongs to oneself, is generated from the integration of visual, tactile, and proprioceptive information. However, long-term non-use of parts of the body due to physical dysfunction caused by trauma or illness may disturb multisensory integration, resulting in a decreased sense of body ownership. The rubber hand illusion (RHI) is an experimental method of manipulating the sense of ownership (SoO). In this illusion, subjects feel as if the rubber hand in front of them were their own hand. The RHI elicits the disownership phenomenon; not only does the rubber hand feels like one's own hand, but one's own hand does not feel like one's own hand. The decrease of ownership of one's own body induced by the bodily illusion is accompanied by neurophysiological changes, such as attenuation of somatosensory evoked potential and decreases in skin temperature. If the loss of the SoO is associated with decreased neurophysiological function, the dysfunction of patients complaining of the loss of ownership can be exacerbated; appropriate rehabilitation prescriptions are urgently required. The present study attempted to induce a sense of disownership of subjects' own hands using the RHI and investigated whether the tactile sensitivity threshold was altered by disownership. Via questionnaire, subjects reported a decrease of ownership after the RHI manipulation; at the same time, tactile sensitivity thresholds were shown to increase in tactile evaluation using the Semmes-Weinstein monofilaments test. The tactile detection rate changes before and after the RHI were negatively correlated with the disownership-score changes. These results show that subjects' sense of disownership, that their own hands did not belong to them, led to decreases in tactile sensitivity. The study findings also suggest that manipulating of illusory ownership can be a tool for estimating the degree of exacerbation of sensory impairment in patients. Consideration of new interventions that optimize the sense of body ownership may contribute to new rehabilitation strategies for post-stroke sensory impairment.

6.
Geriatrics (Basel) ; 5(4)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353168

ABSTRACT

In this study, we investigated the fluctuation characteristics of micro vertical acceleration of center of mass (vCOMacc) in standing and examined the usefulness of vCOMacc as an aging marker for standing control abilities. Sixteen young and 18 older adults participated in this experiment. Data for vCOMacc were calculated as the vertical ground reaction force value divided by each participant's body mass using a force plate. The COMacc frequency structure was determined using the continuous wavelet transform to analyze the relative frequency characteristics. For time domain analysis, we determined the root mean square (RMS) and maximum amplitude (MA) of the integrated power spectral density. We also analyzed the correlation between vCOMacc and lower limb muscle activity. The relative frequency band of vCOMacc was higher in older than young adults, and the time domain indicators were sufficient to distinguish the effects of aging. Regarding the relationship between vCOMacc during standing and muscle activity, a correlation was found with the soleus muscle in young adults, while it was moderately correlated with the gastrocnemius muscle in older adults. The cause of vCOM may be related to differences in muscle activity, and vCOMacc may be utilized to more easily assess the effects of aging in standing control.

7.
Cell Struct Funct ; 38(1): 15-20, 2013.
Article in English | MEDLINE | ID: mdl-23318214

ABSTRACT

We examined the regulation of neuritogenesis by a pulsed electromagnetic field (PEMF) in rat PC12 pheochromocytoma cells, which can be induced to differentiate into neuron-like cells with elongated neurites by inducers such as nerve growth factor (NGF). Plated PC12 cells were exposed to a single PEMF (central magnetic flux density, 700 mT; frequency, 0.172 Hz) for up to 12 h per day and were then evaluated for extent of neuritogenesis or acetylcholine esterase (AChE) activity. To analyze the mechanism underlying the effect of the PEMF on the cells, its effects on intracellular signaling were examined using the ERK kinase (MEK) inhibitors PD098059 and U0126 (U0124 was used as a negative control for U0126). The number of neurite-bearing PC12 cells and AChE activity increased after PEMF exposure without the addition of other inducers of neuritogenesis. Additionally, PEMF exposure induced sustained activation of ERK1/2 in PC12 cells, but not in NR8383 rat alveolar macrophages. Furthermore, U0126 strongly inhibited PEMF-dependent ERK1/2 activation and neuritogenesis. The PEMF-dependent neuritogenesis was also suppressed by PD098059, but not U0124. These results suggest that PEMF stimulation independently induced neuritogenesis and that activation of MEK-ERK1/2 signaling was induced by a cell-type-dependent mechanism required for PEMF-dependent neuritogenesis in PC12 cells.


Subject(s)
Cell Differentiation , Nerve Growth Factor , Neurites , Animals , Butadienes/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Differentiation/radiation effects , Electromagnetic Fields , Flavonoids/pharmacology , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/radiation effects , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/radiation effects , Nerve Growth Factor/drug effects , Nerve Growth Factor/metabolism , Nerve Growth Factor/radiation effects , Neurites/drug effects , Neurites/physiology , Neurites/radiation effects , Nitriles/pharmacology , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...