Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2241): 20210417, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36463923

ABSTRACT

In this review, after providing the basic physical concept behind quantum annealing (or adiabatic quantum computation), we present an overview of some recent theoretical as well as experimental developments pointing to the issues which are still debated. With a brief discussion on the fundamental ideas of continuous and discontinuous quantum phase transitions, we discuss the Kibble-Zurek scaling of defect generation following a ramping of a quantum many body system across a quantum critical point. In the process, we discuss associated models, both pure and disordered, and shed light on implementations and some recent applications of the quantum annealing protocols. Furthermore, we discuss the effect of environmental coupling on quantum annealing. Some possible ways to speed up the annealing protocol in closed systems are elaborated upon: we especially focus on the recipes to avoid discontinuous quantum phase transitions occurring in some models where energy gaps vanish exponentially with the system size. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

2.
Philos Trans A Math Phys Eng Sci ; 381(2241): 20210411, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36463929

ABSTRACT

We study the statistics of the kink number generated by quantum annealing in a one-dimensional transverse Ising model coupled to a bosonic thermal bath. Using the freezing ansatz for quantum annealing in the thermal environment, we show the relation between the ratio of the second to the first cumulant of the kink number distribution and the average kink density. The theoretical result is confirmed thoroughly by numerical simulation using the non-Markovian infinite time-evolving block decimation which we proposed recently. The simulation using D-Wave's quantum annealer is also discussed. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

3.
Phys Rev Lett ; 128(17): 170502, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35570457

ABSTRACT

We study quantum annealing in the quantum Ising model coupled to a thermal environment. When the speed of quantum annealing is sufficiently slow, the system evolves following the instantaneous thermal equilibrium. This quasistatic and isothermal evolution, however, fails near the end of annealing because the relaxation time grows infinitely, therefore yielding excess energy from the thermal equilibrium. We develop a phenomenological theory based on this picture and derive a scaling relation of the excess energy after annealing. The theoretical results are numerically confirmed using a novel non-Markovian method that we recently proposed based on a path-integral representation of the reduced density matrix and the infinite time evolving block decimation. In addition, we discuss crossovers from weak to strong coupling as well as from the adiabatic to quasistatic regime, and propose experiments on the D-Wave quantum annealer.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 065701, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19658557

ABSTRACT

A quantum-thermal annealing method using a cluster-flip algorithm is studied in the two-dimensional spin-glass model. The temperature (T) and the transverse field (Gamma) are decreased simultaneously with the same rate along a linear path on the T-Gamma plane. We found that the additional pulse of the transverse field to the frozen local spins produces a good approximate solution with a low computational cost.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 1): 051112, 2007 May.
Article in English | MEDLINE | ID: mdl-17677027

ABSTRACT

We introduce transverse ferromagnetic interactions, in addition to a simple transverse field, to accelerate the convergence of quantum annealing of the random-field Ising model. The conventional approach using only the transverse-field term is known to be plagued by slow convergence when the true ground state has strong ferromagnetic characteristics for the random-field Ising model. The transverse ferromagnetic interactions are shown to improve the performance significantly in such cases. This conclusion is drawn from the analyses of the energy eigenvalues of instantaneous stationary states as well as by the very fast algorithm of Bethe-type mean-field annealing adopted to quantum systems. The present study highlights the importance of a flexible choice of the type of quantum fluctuations to achieve the best possible performance in quantum annealing. The existence of such flexibility is an outstanding advantage of quantum annealing over simulated annealing.

6.
Langmuir ; 23(11): 5872-4, 2007 May 22.
Article in English | MEDLINE | ID: mdl-17458985

ABSTRACT

The synthesis of basic magnesium carbonate was examined under ultrasonic irradiation and was performed by the soda ash method using magnesium sulfate and sodium carbonate as starting materials. The particulate product was evaluated using SEM observations. Ultrasonic irradiation in the preparation of basic magnesium carbonate was found to give fine petaloid microspheres of about 3 mum in primary particle size.

SELECTION OF CITATIONS
SEARCH DETAIL
...