Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
New Microbiol ; 47(1): 52-59, 2024 May.
Article in English | MEDLINE | ID: mdl-38700884

ABSTRACT

Monitoring Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infection after transplantation is recommended to enable preemptive therapy. However, the most suitable sample type remains unclear. Patients who underwent hematopoietic stem cell or liver transplantation were included in this study. Viral loads in sequential whole-blood and plasma samples were retrospectively analyzed. EBV DNA was detected more frequently in whole blood (55%) than in plasma (18%). The detection rate of CMV DNA was similar between the two sample types. The correlation of viral loads between the two sample types were 0.515 and 0.688 for EBV and CMV, respectively. Among paired samples in which EBV DNA was detected in whole blood, the plasma EBV detection rate was significantly higher in patients who underwent hematopoietic stem cell transplantation than in those who underwent liver transplantation. The viral DNA load in whole blood and plasma showed similar trends. The EBV detection rate was higher in whole blood, and a high correlation was observed between CMV DNA loads and whole blood and plasma. These results indicate that whole blood is more sensitive for monitoring both EBV and CMV, whereas plasma is a potential alternative sample for monitoring CMV.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Load , Humans , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/diagnosis , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/isolation & purification , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/diagnosis , Male , Female , Middle Aged , Adult , Retrospective Studies , DNA, Viral/blood , Young Adult , Hematopoietic Stem Cell Transplantation , Aged , Plasma/virology , Liver Transplantation , Adolescent
2.
Biopsychosoc Med ; 18(1): 13, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760779

ABSTRACT

BACKGROUND: Cognitive behavioral therapy for insomnia (CBT-I) is among the recommended non-pharmacological treatments for patients with insomnia. While there are multiple reports on the effects of CBT-I treatment, few studies evaluating the factors associated with the treatment response to CBT-I have been reported. The present study aimed to confirm the effects of CBT-I in patients with insomnia and to examine the clinico-demographic factors that can predict the outcomes of CBT-I in these patients. METHODS: Overall, 62 patients were included in the present study. To confirm the effectiveness of CBT-I, we compared the pre- and post-CBT-I therapy values of several sleep parameters. Furthermore, to identify the clinico-demographic factors that could be predictive of the treatment response to CBT-I, we performed generalized linear model (GLM) analysis. RESULTS: The values of several sleep parameters were significantly lower after treatment than at baseline. The results of the GLM analysis revealed that sex and occupation were significantly associated with the treatment response to CBT-I. CONCLUSIONS: The present results suggest that several clinico-demographic factors should be considered in the treatment of patients with insomnia.

3.
Article in English | MEDLINE | ID: mdl-38775453

ABSTRACT

OBJECTIVES: Chronic recurrent multifocal osteomyelitis (CRMO) is an autoinflammatory disease characterized by sterile bone inflammation; however, its pathophysiology is poorly understood. Thus, this study aimed to characterize the serum proteomic profiles of patients with CRMO to better understand the molecular mechanisms underpinning CRMO pathogenesis. METHODS: Proteomic profiling of the sera collected from 11 patients with CRMO (five patients were in active phase, six were in inactive phase) was conducted using liquid chromatography-mass spectrometry. Sera from four children without inflammatory diseases were used as controls. Pathway analysis was performed to identify the upregulated and downregulated proteins in patients with active CRMO. RESULTS: Compared with the control group, 19 and 41 proteins were upregulated and downregulated, respectively, in patients with active CRMO. Pathway and process enrichment analyses revealed that axon guidance was the most enriched category of upregulated proteins in patients with active CRMO, followed by neutrophil degranulation and mitogen-activated protein kinase cascade regulation. In comparison to patients with inactive CRMO, 36 proteins, including 11 keratin proteins, were upregulated and highly enriched in the intermediate filament organization category. Rho GTPase pathway-related proteins were downregulated in ibuprofen-treated patients. CONCLUSION: Proteomic analysis identified upregulated proteins in the sera of patients with acute CRMO. These proteins can be used as biomarkers for disease diagnosis and activity. Furthermore, we anticipate that this study will contribute to a deeper understanding of the pathophysiology of CRMO, which, in turn, will contribute to the discovery of potential novel therapeutic targets.

4.
J Clin Immunol ; 44(4): 103, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642164

ABSTRACT

Epstein-Barr virus (EBV) infection can lead to infectious mononucleosis (EBV-IM) and, more rarely, EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which is characterized by a life-threatening hyperinflammatory cytokine storm with immune dysregulation. Interferon-gamma (IFNγ) has been identified as a critical mediator for primary HLH; however, the detailed role of IFNγ and other cytokines in EBV-HLH is not fully understood. In this study, we used single-cell RNA sequencing to characterize the immune landscape of EBV-HLH and compared it with EBV-IM. Three pediatric patients with EBV-HLH with different backgrounds, one with X-linked lymphoproliferative syndrome type 1 (XLP1), two with chronic active EBV disease (CAEBV), and two patients with EBV-IM were enrolled. The TUBA1B + STMN1 + CD8 + T cell cluster, a responsive proliferating cluster with rich mRNA detection, was explicitly observed in EBV-IM, and the upregulation of SH2D1A-the gene responsible for XLP1-was localized in this cluster. This proliferative cluster was scarcely observed in EBV-HLH cases. In EBV-HLH cases with CAEBV, upregulation of LAG3 was observed in EBV-infected cells, which may be associated with an impaired response by CD8 + T cells. Additionally, genes involved in type I interferon (IFN) signaling were commonly upregulated in each cell fraction of EBV-HLH, and activation of type II IFN signaling was observed in CD4 + T cells, natural killer cells, and monocytes but not in CD8 + T cells in EBV-HLH. In conclusion, impaired responsive proliferation of CD8 + T cells and upregulation of type I IFN signaling were commonly observed in EBV-HLH cases, regardless of the patients' background, indicating the key features of EBV-HLH.


Subject(s)
Epstein-Barr Virus Infections , Lymphohistiocytosis, Hemophagocytic , Lymphoproliferative Disorders , Humans , Child , Herpesvirus 4, Human , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , CD8-Positive T-Lymphocytes , Interferon-gamma/genetics , Lymphoproliferative Disorders/diagnosis , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/complications , Gene Expression Profiling
5.
Vaccine ; 42(11): 2927-2932, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38548526

ABSTRACT

BACKGROUND: The introduction of varicella vaccines into routine pediatric immunization programs has led to a considerable reduction in varicella incidence. However, there have been reports of varicella, herpes zoster, and meningitis caused by the vaccine strain of varicella-zoster virus (VZV), raising concerns. Establishing the relationship between the wild-type and vaccine strains in VZV infections among previously vaccinated individuals is crucial. Differences in the single nucleotide polymorphisms (SNPs) among vaccine strains can be utilized to identify the strain. In this study, we employed nanopore sequencing to identify VZV strains and analyzed clinical samples. METHODS: We retrospectively examined vesicle and cerebrospinal fluid samples from patients with VZV infections. One sample each of the wild-type and vaccine strains, previously identified using allelic discrimination real-time PCR and direct sequencing, served as controls. Ten samples with undetermined VZV strains were included. After DNA extraction, a long PCR targeting the VZV ORF62 region was executed. Nanopore sequencing identified SNPs, allowing discrimination between the vaccine and wild-type strains. RESULTS: Nanopore sequencing confirmed SNPs at previously reported sites (105,705, 106,262, 107,136, and 107,252), aiding in distinguishing between wild-type and vaccine strains. Among the ten unknown samples, nine were characterized as wild strains and one as a vaccine strain. Even in samples with low VZV DNA levels, nanopore sequencing was effective in strain identification. CONCLUSION: This study validates that nanopore sequencing is a reliable method for differentiating between the wild-type and vaccine strains of VZV. Its ability to produce long-read sequences is remarkable, allowing simultaneous confirmation of known SNPs and the detection of new mutations. Nanopore sequencing can serve as a valuable tool for the swift and precise identification of wild-type and vaccine strains and has potential applications in future VZV surveillance.


Subject(s)
Chickenpox , Herpes Zoster , Nanopore Sequencing , Humans , Child , Herpesvirus 3, Human/genetics , Retrospective Studies , Polymorphism, Restriction Fragment Length , Polymerase Chain Reaction/methods , Chickenpox Vaccine/genetics , Herpes Zoster/prevention & control , DNA, Viral/genetics
6.
Sci Rep ; 14(1): 5475, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443656

ABSTRACT

Congenital cytomegalovirus (cCMV) infection can damage the central nervous system in infants; however, its prognosis cannot be predicted from clinical evaluations at the time of birth. Urinary exosomes can be used to analyze neuronal damage in neuronal diseases. To investigate the extent of neuronal damage in patients with cCMV, exosomal miRNA expression in the urine was investigated in cCMV-infected infants and controls. Microarray analysis of miRNA was performed in a cohort of 30 infants, including 11 symptomatic cCMV (ScCMV), 7 asymptomatic cCMV (AScCMV), and one late-onset ScCMV cases, and 11 healthy controls (HC). Hierarchical clustering analysis revealed the distinct expression profile of ScCMV. The patient with late-onset ScCMV was grouped into the ScCMV cluster. Pathway enrichment analysis of the target mRNAs differed significantly between the ScCMV and HC groups; this analysis also revealed that pathways related to brain development were linked to upregulated pathways. Six miRNAs that significantly different between groups (ScCMV vs. HC and ScCMV vs. AScCMV) were selected for digital PCR in another cohort for further validation. Although these six miRNAs seemed insufficient for predicting ScCMV, expression profiles of urine exosomal miRNAs can reveal neurological damage in patients with ScCMV compared to those with AcCMV or healthy infants.


Subject(s)
Body Fluids , Cytomegalovirus Infections , Exosomes , MicroRNAs , Child , Infant , Humans , Exosomes/genetics , MicroRNAs/genetics , Central Nervous System , Cytomegalovirus Infections/genetics
7.
Front Immunol ; 15: 1337070, 2024.
Article in English | MEDLINE | ID: mdl-38529277

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) features a hypercoagulable state, but therapeutic anticoagulation effectiveness varies with disease severity. We aimed to evaluate the dynamics of the coagulation profile and its association with COVID-19 severity, outcomes, and biomarker trajectories. Methods: This multicenter, prospective, observational study included patients with COVID-19 requiring respiratory support. Rotational thromboelastometry findings were evaluated for coagulation and fibrinolysis status. Hypercoagulable status was defined as supranormal range of maximum clot elasticity in an external pathway. Longitudinal laboratory parameters were collected to characterize the coagulation phenotype. Results: Of 166 patients, 90 (54%) were severely ill at inclusion (invasive mechanical ventilation, 84; extracorporeal membrane oxygenation, 6). Higher maximum elasticity (P=0.02) and lower maximum lysis in the external pathway (P=0.03) were observed in severely ill patients compared with the corresponding values in patients on non-invasive oxygen supplementation. Hypercoagulability components correlated with platelet and fibrinogen levels. Hypercoagulable phenotype was associated with favorable outcomes in severely ill patients, while normocoagulable phenotype was not (median time to recovery, 15 days vs. 27 days, P=0.002), but no significant association was observed in moderately ill patients. In patients with severe COVID-19, lower initial C3, minimum C3, CH50, and greater changes in CH50 were associated with the normocoagulable phenotype. Changes in complement components correlated with dynamics of coagulation markers, hematocrit, and alveolar injury markers. Conclusions: While hypercoagulable states become more evident with increasing severity of respiratory disease in patients with COVID-19, normocoagulable phenotype is associated with triggered by alternative pathway activation and poor outcomes.


Subject(s)
COVID-19 , Thrombophilia , Humans , Prospective Studies , Thrombophilia/etiology , Blood Coagulation , Phenotype
8.
Plants (Basel) ; 13(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38337864

ABSTRACT

Modifying inflorescence architecture improves grain number and grain weight in bread wheat (Triticum aestivum). Allelic variation in Grain Number Increase 1 (GNI-A1) genes, encoding a homeodomain leucine zipper class I transcription factor, influences grain number and yield. However, allelic information about GNI-A1 in diverse germplasms remains limited. Here, we investigated GNI-A1 alleles in a panel of 252 diverse bread wheat accessions (NBRP core collection and HRO breeder's panel) by target resequencing. Cultivars carrying the reduced-function allele (105Y) were predominant in the NBRP panel, whereas the 105N functional allele was the major type in the HRO panel. Cultivars with the 105Y allele were distributed in Asian landraces but not in European genotypes. Association analysis demonstrated that floret fertility, together with grain size, were improved in cultivars in the NBRP core collection carrying the 105Y allele. These results imply that different alleles of GNI-A1 have been locally selected, with the 105Y allele selected in East Asia and the 105N allele selected in Europe.

9.
J Med Virol ; 96(2): e29450, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304956

ABSTRACT

Primary Epstein-Barr virus (EBV) infection occasionally causes EBV-infectious mononucleosis (EBV-IM) and EBV-hemophagocytic lymphohistiocytosis (EBV-HLH). Although EBV-IM is mostly mild and self-limiting, EBV-HLH is a life-threatening disease characterized by excessive immune activation. However, the pathogenesis of EBV-HLH is yet to be fully elucidated. A diagnostic biomarker for EBV-HLH is desirable because early diagnosis and treatment are critical for the effective management of patients. In this study, the proteomic profiling of plasma was performed using liquid chromatography-mass spectrometry to identify proteins specific to EBV-IM and EBV-HLH. Furthermore, pathway analysis was performed for the proteins upregulated in patients with EBV-IM and EBV-HLH. Compared to healthy controls, 63 and 18 proteins were upregulated in patients with EBV-IM and EBV-HLH, respectively. Pathway and process enrichment analyses revealed that the complement system was the most enriched category of upregulated proteins in EBV-IM, whereas proteins related to immune effector processes were the most enriched in EBV-HLH. Among the 18 proteins upregulated in EBV-HLH, seven were exclusive to EBV-HLH. These specific proteins were associated with three pathways, and apolipoprotein E was commonly found in all the pathways. Proteomic analysis may provide new insights into the host response to EBV infection and the pathogenesis of EBV-related diseases.


Subject(s)
Epstein-Barr Virus Infections , Infectious Mononucleosis , Lymphohistiocytosis, Hemophagocytic , Humans , Herpesvirus 4, Human/genetics , Infectious Mononucleosis/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Proteomics
10.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 82-87, 2024.
Article in English | MEDLINE | ID: mdl-38417856

ABSTRACT

We investigated the effects of short-term dietary zinc deficiency on zinc and calcium metabolism. Four-week-old male Wistar rats were divided into two pair-fed groups for a 1-wk treatment: zinc-deficient group (ZD, 1 ppm); control group (PF, 30 ppm). The mRNA expression of zinc transporters, such as Slc39a (Zip) 4, Zip5, Zip10, and Slc30a (ZnT) 1, in various tissues (liver, kidney, and duodenum) quickly responded to dietary zinc deficiency. Although there was no significant difference in serum calcium concentrations between the PF and ZD groups, serum 1,25-dihydroxycholecalciferol (1,25(OH)2D3) was higher in the ZD group than in the PF group. Moreover, short-term zinc deficiency significantly increased mRNA expression of transient receptor potential (TRP) cation channel subfamily vanilloid (V) member 6, S100 calcium binding protein G (S100g), and ATPase plasma membrane Ca2+ transporting 1 (Atp2b1) in the duodenum. Furthermore, short-term zinc deficiency increased vitamin D receptor (VDR) and cytochrome P450 family 24 subfamily A member 1 (Cyp24a1) mRNA expression in the kidney. These findings suggested that short-term zinc deficiency maintains serum calcium concentrations through Ca absorption-related gene expression in the duodenum, and that short-term zinc deficiency induced the expression of Cyp24a1 in kidney in response to an increase in the serum 1,25(OH)2D3 level.


Subject(s)
Calcium , Zinc , Rats , Male , Animals , Calcium/metabolism , Vitamin D3 24-Hydroxylase/genetics , Rats, Wistar , Diet , Gene Expression , RNA, Messenger/metabolism
11.
J Pediatric Infect Dis Soc ; 12(10): 525-533, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37738566

ABSTRACT

BACKGROUND: Congenital cytomegalovirus (cCMV) infection is a leading cause of nonhereditary neurological complications. When considering antiviral treatment, it is important to differentiate between symptomatic and asymptomatic patients. This study aimed to identify candidate plasma biomarkers for neurological complications of cCMV infection using proteomic analysis. METHODS: This study retrospectively enrolled five patients with symptomatic cCMV infection, four with asymptomatic cCMV infection with isolated sensorineural hearing loss (SNHL), and five with asymptomatic cCMV infection. The plasma samples were collected during neonatal period. The peptides were analyzed using liquid chromatography-mass spectrometry. The concentrations of differentially expressed proteins were validated using an enzyme-linked immunosorbent assay. RESULTS: A total of 456 proteins were identified and quantified. The levels of 80 proteins were significantly different between patients with and without cCMV-related symptoms including isolated SNHL. The levels of 31 proteins were significantly different between patients with and without neuroimaging abnormalities. The plasma concentrations of Fms-related receptor tyrosine kinase 4 in patients with cCMV-related symptoms were significantly higher than those in patients with asymptomatic cCMV infection. Moreover, plasma peptidylprolyl isomerase A levels were significantly higher in patients with neuroimaging abnormalities than in those without. CONCLUSIONS: Proteomic analysis of patients with cCMV infection showed that Fms-related receptor tyrosine kinase 4 and peptidylprolyl isomerase A could be novel diagnostic biomarkers for neurological complications of cCMV infection.


Subject(s)
Cytomegalovirus Infections , Hearing Loss, Sensorineural , Infant, Newborn , Humans , Infant , Cytomegalovirus , Retrospective Studies , Proteomics , Cytomegalovirus Infections/congenital , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/etiology , Biomarkers , Peptidylprolyl Isomerase , Protein-Tyrosine Kinases
12.
Breed Sci ; 73(2): 168-179, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37404346

ABSTRACT

The isolation of disease resistance genes introduced from wild or related cultivated species is essential for understanding their mechanisms, spectrum and risk of breakdown. To identify target genes not included in reference genomes, genomic sequences with the target locus must be reconstructed. However, de novo assembly approaches of the entire genome, such as those used for constructing reference genomes, are complicated in higher plants. Moreover, in the autotetraploid potato, the heterozygous regions and repetitive structures located around disease resistance gene clusters fragment the genomes into short contigs, making it challenging to identify resistance genes. In this study, we report that a de novo assembly approach of a target gene-specific homozygous dihaploid developed through haploid induction was suitable for gene isolation in potatoes using the potato virus Y resistance gene Rychc as a model. The assembled contig containing Rychc-linked markers was 3.3 Mb in length and could be joined with gene location information from the fine mapping analysis. Rychc was successfully identified in a repeated island located on the distal end of the long arm of chromosome 9 as a Toll/interleukin-1 receptor-nucleotide-binding site-leucine rich repeat (TIR-NBS-LRR) type resistance gene. This approach will be practical for other gene isolation projects in potatoes.

13.
J Pers Med ; 13(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37240890

ABSTRACT

The simulation study investigated the relationship between the local linear trend model's data-comparison accuracy, baseline-data variability, and changes in level and slope after introducing the N-of-1 intervention. Contour maps were constructed, which included baseline-data variability, change in level or slope, and percentage of non-overlapping data between the state and forecast values by the local linear trend model. Simulation results showed that baseline-data variability and changes in level and slope after intervention affect the data-comparison accuracy based on the local linear trend model. The field study investigated the intervention effects for actual field data using the local linear trend model, which confirmed 100% effectiveness of previous N-of-1 studies. These results imply that baseline-data variability affects the data-comparison accuracy using a local linear trend model, which could accurately predict the intervention effects. The local linear trend model may help assess the intervention effects of effective personalized interventions in precision rehabilitation.

14.
J Matern Fetal Neonatal Med ; 36(1): 2207113, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37150592

ABSTRACT

BACKGROUND: Respiratory distress is common in neonates admitted to neonatal intensive care units. Additionally, infectious diseases such as intrauterine infections or vertical transmission are important underlying causes of respiratory failure. However, pathogens often cannot be identified in neonates, and there are many cases in which antibacterial drugs are empirically administered. Next-generation sequencing (NGS) is advantageous in that it can detect trace amounts of bacteria that cannot be detected by culturing or bacteria that are difficult to cultivate. However, there are few reports on the diagnosis of infectious diseases using NGS in the neonatal field, especially those targeting respiratory distress. OBJECTIVE: The purpose of our study was to investigate the microorganisms associated with neonatal respiratory distress and to determine whether less invasive collection specimens such as plasma and gastric fluid are useful. METHODS: Neonates were prospectively recruited between January and August 2020 from Nagoya University Hospital. The inclusion criteria were as follows: 1) admission to the neonatal intensive care unit; 2) respiratory distress presentation within 48 h of birth; and 3) suspected infection, collection of blood culture, and administration of antibiotics. Plasma samples and blood cultures were simultaneously collected. Gastric fluid samples were also collected if the patient was not started on enteral nutrition. Information on the patients and their mothers were collected from the medical records. DNA was extracted from 140 µL of plasma and gastric fluid samples. DNA sequencing libraries were prepared, and their quality was analyzed. DNA libraries were sequenced using high-throughput NGS. The NGS data of plasma and gastric fluid samples were analyzed using the metagenomic pipeline PATHDET, which calculated the number of reads assigned to microorganisms and their relative abundance. Putative pathogens were listed. RESULTS: Overall, 30 plasma samples and 25 gastric fluid samples from 30 neonates were analyzed. Microorganism-derived reads of gastric fluid samples were significantly higher than those of plasma samples. Transient tachypnea of the newborn was the most common cause of respiratory distress with 13 cases (43%), followed by respiratory distress syndrome with 7 cases (23%). There were 8 cases (29%) of chorioamnionitis and 7 cases (25%) of funisitis pathologically diagnosed. All blood cultures were negative, and only two gastric fluid cultures were positive for group B Streptococcus (Patient 15) and Candida albicans (Patient 24). Putative pathogens that met the positive criteria for PATHET were detected in four gastric fluid samples, one of which was group B Streptococcus from Patient 15. In the gastric fluid sample of Patient 24, Candida albicans were detected by NGS but did not meet the positive criteria for PATHDET. Cluster analysis of the plasma samples divided them into two study groups, and the indicator genera of each cluster (Phormidium or Toxoplasma) are shown in Figure 1. Clinical findings did not show any significant differences between the two groups. Cluster analysis of the gastric fluid samples divided them into three study groups, and the indicator genera of each cluster (Ureaplasma, Nostoc, and Streptococcus) are shown in Figure 2. The incidence rate of chorioamnionitis was significantly higher in Ureaplasma group than in the other two groups. CONCLUSION: Gastric fluid may be useful for assessing neonatal patients with respiratory distress. To the best of our knowledge, this was the first study to reveal that the presence of Ureaplasma in the gastric fluid of neonates with respiratory distress was associated with chorioamnionitis. The early diagnosis of intra-amniotic infections using gastric fluid and its treatment may change the treatment strategy for neonatal respiratory distress. Screening for Ureaplasma in neonates with respiratory distress may reduce the need for empirical antibiotic administration. Further research is required to confirm these findings.


Subject(s)
Chorioamnionitis , Infant, Newborn, Diseases , Respiratory Distress Syndrome, Newborn , Ureaplasma Infections , Pregnancy , Infant, Newborn , Female , Humans , Chorioamnionitis/microbiology , Ureaplasma/genetics , Anti-Bacterial Agents/therapeutic use , Infant, Newborn, Diseases/drug therapy , High-Throughput Nucleotide Sequencing , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/drug therapy , Amniotic Fluid/microbiology , Ureaplasma Infections/drug therapy
15.
Brain Sci ; 13(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36979285

ABSTRACT

Paired associative stimulation (PAS) increases and decreases cortical excitability in primary motor cortex (M1) neurons, depending on the spike timing-dependent plasticity, i.e., long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity, respectively. However, how PAS affects the cortical circuits for the agonist and antagonist muscles of M1 is unclear. Here, we investigated the changes in the LTP- and LTD-like plasticity for agonist and antagonist muscles during PAS: 200 pairs of 0.25-Hz peripheral electric stimulation of the right median nerve at the wrist, followed by a transcranial magnetic stimulation of the left M1 with an interstimulus interval of 25 ms (PAS-25 ms) and 10 ms (PAS-10 ms). The unconditioned motor evoked potential amplitudes of the agonist muscles were larger after PAS-25 ms than after PAS-10 ms, while those of the antagonist muscles were smaller after PAS-25 ms than after PAS-10 ms. The γ-aminobutyric acid A (GABAA)- and GABAB-mediated cortical inhibition for the agonist and antagonist muscles were higher after PAS-25 ms than after PAS-10 ms. The cortical excitability for the agonist and antagonist muscles reciprocally and topographically increased and decreased after PAS, respectively; however, GABAA and GABAB-mediated cortical inhibitory functions for the agonist and antagonist muscles were less topographically decreased after PAS-10 ms. Thus, PAS-25 ms and PAS-10 ms differentially affect the LTP- and LTD-like plasticity in agonist and antagonist muscles.

16.
J Mol Diagn ; 25(6): 403-409, 2023 06.
Article in English | MEDLINE | ID: mdl-36965664

ABSTRACT

Human adenovirus (AdV) reactivation after hematopoietic stem cell transplantation (HSCT) is associated with life-threatening clinical manifestations. Although real-tme quantitative PCR (qPCR) has been widely used to measure AdV loads, it has not been standardized for AdV. Droplet digital PCR (ddPCR) is a novel pathogen detection technology that enables the absolute quantification of viral loads. ddPCR would enable a more accurate AdV DNA detection compared with qPCR. In this study, ddPCR was developed for AdV DNA and its performance characteristics compared with those of qPCR. AdV DNAemia incidence during the first 12 weeks after allogenic HSCT was then retrospectively examined by qPCR and ddPCR in 97 HSCT procedures using the preserved 545 DNA samples. ddPCR exhibited better reproducibility and sensitivity, as well as equivalent quantifiability, compared with qPCR. AdV DNA among HSCT patients was detected in 11 (2.0%) and 49 (9.0%) of 545 samples by qPCR and ddPCR, respectively. AdV DNA levels >1000 copies/mL were observed in five cases by qPCR and/or ddPCR. However, two patients developed fulminant hepatitis and died; other patients remained asymptomatic with subsequently undetectable AdV DNA. In conclusion, ddPCR was more sensitive and reproducible in detecting AdV DNA among pediatric HSCT recipients than qPCR. ddPCR offers the potential to provide a more accurate DNAemia detection, determine cutoff values for treatment initiation, and enable antiviral efficacy assessment.


Subject(s)
Adenoviridae Infections , Hematopoietic Stem Cell Transplantation , Child , Humans , Adenoviridae/genetics , Retrospective Studies , Reproducibility of Results , Hematopoietic Stem Cell Transplantation/adverse effects , Adenoviridae Infections/diagnosis , Adenoviridae Infections/etiology , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods
17.
Proc Natl Acad Sci U S A ; 120(11): e2214968120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897977

ABSTRACT

Wheat yellow mosaic virus (WYMV) is a pathogen transmitted into its host's roots by the soil-borne vector Polymyxa graminis. Ym1 and Ym2 genes protect the host from the significant yield losses caused by the virus, but the mechanistic basis of these resistance genes remains poorly understood. Here, it has been shown that Ym1 and Ym2 act within the root either by hindering the initial movement of WYMV from the vector into the root and/or by suppressing viral multiplication. A mechanical inoculation experiment on the leaf revealed that the presence of Ym1 reduced viral infection incidence, rather than viral titer, while that of Ym2 was ineffective in the leaf. To understand the basis of the root specificity of the Ym2 product, the gene was isolated from bread wheat using a positional cloning approach. The candidate gene encodes a CC-NBS-LRR protein and it correlated allelic variation with respect to its sequence with the host's disease response. Ym2 (B37500) and its paralog (B35800) are found in the near-relatives, respectively, Aegilops sharonensis and Aegilops speltoides (a close relative of the donor of bread wheat's B genome), while both sequences, in a concatenated state, are present in several accessions of the latter species. Structural diversity in Ym2 has been generated via translocation and recombination between the two genes and enhanced by the formation of a chimeric gene resulting from an intralocus recombination event. The analysis has revealed how the Ym2 region has evolved during the polyploidization events leading to the creation of cultivated wheat.


Subject(s)
Aegilops , Triticum , Aegilops/genetics , Aegilops/metabolism , Triticum/genetics , Triticum/metabolism , Triticum/virology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/virology , Cloning, Molecular , Transcription, Genetic , Phylogeny , Plant Diseases
19.
Mod Rheumatol ; 33(1): 96-103, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-35234889

ABSTRACT

OBJECTIVES: Romosozumab is a newly released and widely known molecular-targeted drug for severe osteoporosis treatment with comparable effectiveness to denosumab. However, there have been no reports discussing the efficacy of those treatments for rheumatoid arthritis (RA) patients, especially those receiving glucocorticoids. This retrospective observational registry study compared the efficacy of 12-month treatment of denosumab and romosozumab in RA patients under the influence of glucocorticoid intake. METHODS: Following propensity score matching, 36 patients each in the denosumab and romosozumab groups were analysed in this study. Drug effectiveness was evaluated by measuring bone mineral density (BMD) at the lumbar spine, total hip, and femoral neck at baseline, 6 and 12 months as well as alterations in P1NP, TRACP-5b, and simplified disease activity index (SDAI). The occurrence of adverse events and new fractures was also assessed. RESULTS: At 12 months of treatment, BMD at the lumbar spine was increased by 7.5% in the denosumab group and 8.7% in the romosozumab group, which were both significantly and comparably elevated over baseline. At the total hip and femoral neck, romosozumab tended to exhibit favourable efficacy to increase BMD versus denosumab. Both P1NP and TRACP-5b were significantly lower in the denosumab group as compared with the baseline. Conversely in the romosozumab group, P1NP was increased over baseline, while TRACP-5b was decreased. Regarding SDAI alterations, both the romosozumab and denosumab groups exhibited comparable improvements in RA disease activity over time during treatment. Recorded adverse events and new fractures during treatment were few and minor in both groups. CONCLUSIONS: Romosozumab exhibited comparable efficacy to denosumab for increasing BMD even under the influence of glucocorticoids for treating RA. Both drugs may be therefore suitable for managing osteoporosis in patients with RA and glucocorticoid intake.


Subject(s)
Arthritis, Rheumatoid , Bone Density Conservation Agents , Fractures, Bone , Osteoporosis , Humans , Denosumab/adverse effects , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Retrospective Studies , Tartrate-Resistant Acid Phosphatase , Osteoporosis/diagnostic imaging , Osteoporosis/drug therapy , Osteoporosis/chemically induced , Bone Density , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Fractures, Bone/epidemiology , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy
20.
J Pediatr Genet ; 11(4): 287-291, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36267860

ABSTRACT

Congenital scoliosis (CS) is a lateral curvature of the spine characterized by the presence of vertebral anomalies. Pathogenic genetic variants in the TBX6 gene are one of the causes of CS. However, since many clinically diagnosed cases of CS are without known TBX6 gene variations, this study aims to uncover new genes related to disease susceptibility of CS by exome sequencing (ES). This study employed ES in a cohort of 5 Japanese patients with CS and their healthy parents or a sister for a total of 16 samples among 5 families. Variant interpretation was performed using SIFT, PolyPhen-2, Mutation Taster, and CADD. Four de novo variants were identified by ES and confirmed by Sanger sequencing: 1 frameshift variant ( SHISA3 ) and 3 missense variants ( AGBL5 , HDAC4 , and PDE2A ). ES also uncovered 1 homozygous variant in the MOCOS gene. All of these variants were predicted to be deleterious by SIFT, PolyPhen-2, Mutation Taster, and/or CADD. The number of de novo variants identified in this study was exactly what would be expected by chance. Additional functional studies or gathering matched patients using Gene Matcher are needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...