Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 958, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075974

ABSTRACT

The structural integrity of living plant cells heavily relies on the plant cell wall containing a nanofibrous cellulose skeleton. Hence, if synthetic plant cells consist of such a cell wall, they would allow for manipulation into more complex synthetic plant structures. Herein, we have overcome the fundamental difficulties associated with assembling lipid vesicles with cellulosic nanofibers (CNFs). We prepare plantosomes with an outer shell of CNF and pectin, and beneath this, a thin layer of lipids (oleic acid and phospholipids) that surrounds a water core. By exploiting the phase behavior of the lipids, regulated by pH and Mg2+ ions, we form vesicle-crowded interiors that change the outer dimension of the plantosomes, mimicking the expansion in real plant cells during, e.g., growth. The internal pressure enables growth of lipid tubules through the plantosome cell wall, which paves the way to the development of hierarchical plant structures and advanced synthetic plant cell mimics.


Subject(s)
Artificial Cells/metabolism , Biomimetic Materials/metabolism , Cell Wall/metabolism , Plant Cells/metabolism , Artificial Cells/cytology , Biomimetic Materials/chemistry , Capsules/chemistry , Capsules/metabolism , Cell Wall/chemistry , Cell Wall/ultrastructure , Cellulose/chemistry , Microfluidics , Nanofibers/chemistry , Oleic Acid/chemistry , Pectins/chemistry
2.
Acta Biomater ; 69: 196-205, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29341931

ABSTRACT

Materials based on renewable biopolymers, selective permeability and stimuli-responsive release/loading properties play an important role in biomedical applications. Here, in order to mimic the plant primary cell-wall, microcapsules have been fabricated using cell wall polysaccharides, namely pectin, xyloglucan and cellulose nanofibers. For the first time, a large amount of xyloglucan was successfully included in such capsules. These capsules demonstrated stimuli-responsive (ON/OFF) permeability and biocompatibility. The live cell staining revealed that the microcapsules' surface enhanced cell growth and also the non-toxic nature of the microcapsules. In water, the microcapsules were completely and partially permeable to fluorescent dextrans with an average molecular weight of 70 kDa (hydrodynamic diameter of ca. 12 nm) and 2000 kDa (ca. 54 nm), respectively. On the other hand, the permeability dropped quickly when the capsules were exposed to 250 mM NaCl solution, trapping a fraction of the 70 kDa dextrans in the capsule interior. The decrease in permeability was a direct consequence of the capsule-wall composition, i.e. the presence of xyloglucan and a low amount of charged molecules such as pectin. The low permeability of capsules in saline conditions (and in a model biological medium), combined with a capsule wall that is made from dietary fibers only, potentially enables their use in biological applications, such as colon targeted delivery in the gastro-intestinal tract. STATEMENT OF SIGNIFICANCE: For the first time, microcapsules have been prepared that possess capsule walls that mimic the primary cell wall found in natural plant cells. The capsules were assembled using pectin, xyloglucan and cellulose in the form of cellulose nanofibers. The capsules demonstrated stimuli-responsive (ON/OFF) permeability and biocompatibility. The low permeability of capsules in saline conditions (and in a model biological medium), combined with a capsule wall that is made from dietary fibers only, potentially enables their use in biological applications, such as colon targeted delivery in the gastro-intestinal tract. Such model plant cell capsules might also further improve the understanding for the digestion and release of nutrients from natural plant cells found in vegetables and fruits.


Subject(s)
Cellulose/chemistry , Drug Delivery Systems/methods , Glucans/chemistry , Materials Testing , Nanofibers/chemistry , Pectins/chemistry , Xylans/chemistry , Capsules , HEK293 Cells , Humans , Permeability
3.
Int J Pharm ; 526(1-2): 291-299, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28434935

ABSTRACT

The unique colloidal properties of cellulose nanofibers (CNF), makes CNF a very interesting new excipient in pharmaceutical formulations, as CNF in combination with some poorly-soluble drugs can create nanofoams with closed cells. Previous nanofoams, created with the model drug indomethacin, demonstrated a prolonged release compared to films, owing to the tortuous diffusion path that the drug needs to take around the intact air-bubbles. However, the nanofoam was only obtained at a relatively low drug content of 21wt% using fixed processing parameters. Herein, the effect of indomethacin content and processing parameters on the foaming properties was analysed. Results demonstrate that a certain amount of dissolved drug is needed to stabilize air-bubbles. At the same time, larger fractions of dissolved drug promote coarsening/collapse of the wet foam. The pendant drop/bubble profile tensiometry was used to verify the wet-foam stability at different pHs. The pH influenced the amount of solubilized drug and the processing-window was very narrow at high drug loadings. The results were compared to real foaming-experiments and solid state analysis of the final cellular solids. The parameters were assembled into a processing chart, highlighting the importance of the right combination of processing parameters (pH and time-point of pH adjustment) in order to successfully prepare cellular solid materials with up to 46 wt% drug loading.


Subject(s)
Cellulose/chemistry , Excipients/chemistry , Indomethacin/chemistry , Nanofibers/chemistry , Chemistry, Pharmaceutical
4.
Carbohydr Polym ; 136: 292-9, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572358

ABSTRACT

Encapsulation of oxygen sensitive components is important in several areas, including those in the food and pharmaceutical sectors, in order to improve shelf-life (oxidation resistance). Neat nanocellulose films demonstrate outstanding oxygen barrier properties, and thus nanocellulose-based capsules are interesting from the perspective of enhanced protection from oxygen. Herein, two types of nanocellulose-based capsules with liquid hexadecane cores were successfully prepared; a primary nanocellulose polyurea-urethane capsule (diameter: 1.66 µm) and a bigger aggregate capsule (diameter: 8.3 µm) containing several primary capsules in a nanocellulose matrix. To quantify oxygen permeation through the capsule walls, an oxygen-sensitive spin probe was dissolved within the liquid hexadecane core, allowing non-invasive measurements (spin-probe oximetry, electron spin resonance, ESR) of the oxygen concentration within the core. It was observed that the oxygen uptake rate was significantly reduced for both capsule types compared to a neat hexadecane solution containing the spin-probe, i.e. the slope of the non-steady state part of the ESR-curve was approximately one-third and one-ninth for the primary nanocellulose capsule and aggregated capsule, respectively, compared to that for the hexadecane sample. The transport of oxygen was modeled mathematically and by fitting to the experimental data, the oxygen diffusion coefficients of the capsule wall was determined. These values were, however, lower than expected and one plausible reason for this was that the ESR-technique underestimate the true oxygen uptake rate in the present systems at non-steady conditions, when the overall diffusion of oxygen was very slow.

SELECTION OF CITATIONS
SEARCH DETAIL
...