Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 02 21.
Article in English | MEDLINE | ID: mdl-35188100

ABSTRACT

Complementary actions of the neocortex and the hippocampus enable encoding and long-term storage of experience dependent memories. Standard models for memory storage assume that sensory signals reach the hippocampus from superficial layers of the entorhinal cortex (EC). Deep layers of the EC on the other hand relay hippocampal outputs to the telencephalic structures including many parts of the neocortex. Here, we show that cells in layer 5a of the medial EC send a copy of their telencephalic outputs back to the CA1 region of the hippocampus. Combining cell-type-specific anatomical tracing with high-throughput RNA-sequencing based projection mapping and optogenetics aided circuit mapping, we show that in the mouse brain these projections have a unique topography and target hippocampal pyramidal cells and interneurons. Our results suggest that projections of deep medial EC neurons are anatomically configured to influence the hippocampus and neocortex simultaneously and therefore lead to novel hypotheses on the functional role of the deep EC.


Subject(s)
Entorhinal Cortex , Hippocampus , Animals , Entorhinal Cortex/physiology , Hippocampus/physiology , Interneurons , Mice , Neural Pathways/physiology , Neurons/physiology
2.
Cell Microbiol ; 21(7): e13030, 2019 07.
Article in English | MEDLINE | ID: mdl-30965383

ABSTRACT

An effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion. In this study, we show that antibodies specific for PfRh5 and PfCyRPA prevent trimeric complex formation. We identify the EGF-7 domain on PfRipr as a neutralising epitope and demonstrate that antibodies against this region act downstream of complex formation to prevent merozoite invasion. Antibodies against the C-terminal region of PfRipr were more inhibitory than those against either PfRh5 or PfCyRPA alone, and a combination of antibodies against PfCyRPA and PfRipr acted synergistically to reduce invasion. This study supports prioritisation of PfRipr for development as part of a next-generation antimalarial vaccine.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antigens, Protozoan/genetics , Carrier Proteins/genetics , Malaria, Falciparum/drug therapy , Protozoan Proteins/genetics , Antibodies, Neutralizing/immunology , Carrier Proteins/antagonists & inhibitors , Erythrocytes/drug effects , Erythrocytes/immunology , Humans , Malaria Vaccines/immunology , Malaria Vaccines/pharmacology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Merozoites/drug effects , Merozoites/immunology , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...