Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotrauma Rep ; 3(1): 57-69, 2022.
Article in English | MEDLINE | ID: mdl-35112108

ABSTRACT

Observations of short-term changes in the neural health of youth athletes participating in collision sports (e.g., football and soccer) have highlighted a need to explore potential structural alterations in brain tissue volumes for these persons. Studies have shown biochemical, vascular, functional connectivity, and white matter diffusivity changes in the brain physiology of these athletes that are strongly correlated with repetitive head acceleration exposure. Here, research is presented that highlights regional anatomical volumetric measures that change longitudinally with accrued subconcussive trauma. A novel pipeline is introduced that provides simplified data analysis on standard-space template to quantify group-level longitudinal volumetric changes within these populations. For both sports, results highlight incremental relative regional volumetric changes in the subcortical cerebrospinal fluid that are strongly correlated with head exposure events greater than a 50-G threshold at the short-term post-season assessment. Moreover, longitudinal regional gray matter volumes are observed to decrease with time, only returning to baseline/pre-participation levels after sufficient (5-6 months) rest from collision-based exposure. These temporal structural volumetric alterations are significantly different from normal aging observed in sex- and age-matched controls participating in non-collision sports. Future work involves modeling repetitive head exposure thresholds with multi-modal image analysis and understanding the underlying physiological reason. A possible pathophysiological pathway is presented, highlighting the probable metabolic regulatory mechanisms. Continual participation in collision-based activities may represent a risk wherein recovery cannot occur. Even when present, the degree of the eventual recovery remains to be explored, but has strong implications for the well-being of collision-sport participants.

2.
Hum Brain Mapp ; 42(11): 3500-3516, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33949732

ABSTRACT

Functional connectivity, as estimated using resting state functional MRI, has shown potential in bridging the gap between pathophysiology and cognition. However, clinical use of functional connectivity biomarkers is impeded by unreliable estimates of individual functional connectomes and lack of generalizability of models predicting cognitive outcomes from connectivity. To address these issues, we combine the frameworks of connectome predictive modeling and differential identifiability. Using the combined framework, we show that enhancing the individual fingerprint of resting state functional connectomes leads to robust identification of functional networks associated to cognitive outcomes and also improves prediction of cognitive outcomes from functional connectomes. Using a comprehensive spectrum of cognitive outcomes associated to Alzheimer's disease (AD), we identify and characterize functional networks associated to specific cognitive deficits exhibited in AD. This combined framework is an important step in making individual level predictions of cognition from resting state functional connectomes and in understanding the relationship between cognition and connectivity.


Subject(s)
Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Connectome/methods , Nerve Net/diagnostic imaging , Aged , Aged, 80 and over , Alzheimer Disease/physiopathology , Cognitive Dysfunction/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/physiopathology
3.
Sci Rep ; 11(1): 6440, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742031

ABSTRACT

Human brains develop across the life span and largely vary in morphology. Adolescent collision-sport athletes undergo repetitive head impacts over years of practices and competitions, and therefore may exhibit a neuroanatomical trajectory different from healthy adolescents in general. However, an unbiased brain atlas targeting these individuals does not exist. Although standardized brain atlases facilitate spatial normalization and voxel-wise analysis at the group level, when the underlying neuroanatomy does not represent the study population, greater biases and errors can be introduced during spatial normalization, confounding subsequent voxel-wise analysis and statistical findings. In this work, targeting early-to-middle adolescent (EMA, ages 13-19) collision-sport athletes, we developed population-specific brain atlases that include templates (T1-weighted and diffusion tensor magnetic resonance imaging) and semantic labels (cortical and white matter parcellations). Compared to standardized adult or age-appropriate templates, our templates better characterized the neuroanatomy of the EMA collision-sport athletes, reduced biases introduced during spatial normalization, and exhibited higher sensitivity in diffusion tensor imaging analysis. In summary, these results suggest the population-specific brain atlases are more appropriate towards reproducible and meaningful statistical results, which better clarify mechanisms of traumatic brain injury and monitor brain health for EMA collision-sport athletes.


Subject(s)
Athletes , Atlases as Topic , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Adolescent , Athletic Injuries/epidemiology , Brain/anatomy & histology , Brain/growth & development , Brain Concussion/epidemiology , Female , Humans , Male , Young Adult
4.
Brain Imaging Behav ; 14(1): 164-174, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30377933

ABSTRACT

Mitigating the effects of repetitive exposure to head trauma has become a major concern for the general population, given the growing body of evidence that even asymptomatic exposure to head accelerations is linked with increased risk for negative life outcomes and that risk increases as exposure is prolonged over many years. Among women's sports, soccer currently exhibits the highest growth in participation and reports the largest number of mild traumatic brain injuries annually, making female soccer athletes a relevant population in assessing the effects of repetitive exposure to head trauma. Cerebrovascular biomarkers may be useful in assessing the effects of repetitive head trauma, as these are thought to contribute directly to neurocognitive symptoms associated with mild traumatic brain injury. Here we use fMRI paired with a hypercapnic breath hold task along with monitoring of head acceleration events, to assess the relationship between cerebrovascular brain changes and exposure to repetitive head trauma over a season of play in female high school soccer athletes. We identified longitudinal changes in cerebrovascular reactivity that were significantly associated with prolonged accumulation to high magnitude (> 75th percentile) head acceleration events. Findings argue for active monitoring of athletes during periods of exposure to head acceleration events, illustrate the importance of collecting baseline (i.e., pre-exposure) measurements, and suggest modeling as a means of guiding policy to mitigate the effects of repetitive head trauma.


Subject(s)
Brain Concussion/etiology , Brain/diagnostic imaging , Craniocerebral Trauma/physiopathology , Acceleration , Adolescent , Athletes , Athletic Injuries/complications , Brain Concussion/diagnostic imaging , Female , Humans , Hypercapnia/physiopathology , Magnetic Resonance Imaging/methods , Soccer/injuries , Soccer/physiology
5.
Neuroimage Clin ; 24: 101930, 2019.
Article in English | MEDLINE | ID: mdl-31630026

ABSTRACT

Recent evidence of short-term alterations in brain physiology associated with repeated exposure to moderate intensity subconcussive head acceleration events (HAEs), prompts the question whether these alterations represent an underlying neural injury. A retrospective analysis combining counts of experienced HAEs and longitudinal diffusion-weighted imaging explored whether greater exposure to incident mechanical forces was associated with traditional diffusion-based measures of neural injury-reduced fractional anisotropy (FA) and increased mean diffusivity (MD). Brains of high school athletes (N = 61) participating in American football exhibited greater spatial extents (or volumes) experiencing substantial changes (increases and decreases) in both FA and MD than brains of peers who do not participate in collision-based sports (N = 15). Further, the spatial extents of the football athlete brain exhibiting traditional diffusion-based markers of neural injury were found to be significantly correlated with the cumulative exposure to HAEs having peak translational acceleration exceeding 20 g. This finding demonstrates that subconcussive HAEs induce low-level neurotrauma, with prolonged exposure producing greater accumulation of neural damage. The duration and extent of recovery associated with periods in which athletes do not experience subconcussive HAEs now represents a priority for future study, such that appropriate participation and training schedules may be developed to minimize the risk of long-term neurological dysfunction.


Subject(s)
Acceleration/adverse effects , Athletes , Brain/diagnostic imaging , Football/injuries , Students , White Matter/diagnostic imaging , Adolescent , Brain Concussion/diagnostic imaging , Brain Concussion/etiology , Diffusion Magnetic Resonance Imaging/trends , Head/diagnostic imaging , Humans , Male , Schools/trends
6.
Brain Imaging Behav ; 13(3): 735-749, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29802602

ABSTRACT

Long term neurological impairments due to repetitive head trauma are a growing concern for collision sport athletes. American Football has the highest rate of reported concussions among male high school athletes, a position held by soccer for female high school athletes. Recent research has shown that subconcussive events experienced by collision sport athletes can be a further significant source of accrued damage. Collision sport athletes experience hundreds of subconcussive events in a single season, and these largely go uninvestigated as they produce no overt clinical symptoms. Continued participation by these seemingly uninjured athletes is hypothesized to increase susceptibility to diagnoseable brain injury. This study paired magnetic resonance spectroscopy with head impact monitoring to quantify the relationship between metabolic changes and head acceleration event characteristics in high school-aged male football and female soccer collision sport athletes. During the period of exposure to subconcussive events, asymptomatic male (football) collision sport athletes exhibited statistically significant changes in concentrations of glutamate+glutamine (Glx) and total choline containing compounds (tCho) in dorsolateral prefrontal cortex, and female (soccer) collision sport athletes exhibited changes in glutamate+glutamine (Glx) in primary motor cortex. Neurometabolic alterations observed in football athletes during the second half of the season were found to be significantly associated with the average acceleration per head acceleration events, being best predicted by the accumulation of events exceeding 50 g. These marked deviations in neurometabolism, in the absence of overt symptoms, raise concern about the neural health of adolescent collision-sport athletes and suggest limiting exposure to head acceleration events may help to ameliorate the risk of subsequent cognitive impairment.


Subject(s)
Athletic Injuries/psychology , Brain Concussion/physiopathology , Adolescent , Athletes , Brain Concussion/diagnosis , Female , Football/injuries , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Male , Prefrontal Cortex/injuries , Soccer/injuries
7.
Brain Imaging Behav ; 11(1): 98-112, 2017 02.
Article in English | MEDLINE | ID: mdl-26809358

ABSTRACT

As participation in women's soccer continues to grow and the longevity of female athletes' careers continues to increase, prevention and care for mTBI in women's soccer has become a major concern for female athletes since the long-term risks associated with a history of mTBI are well documented. Among women's sports, soccer exhibits among the highest concussion rates, on par with those of men's football at the collegiate level. Head impact monitoring technology has revealed that "concussive hits" occurring directly before symptomatic injury are not predictive of mTBI, suggesting that the cumulative effect of repetitive head impacts experienced by collision sport athletes should be assessed. Neuroimaging biomarkers have proven to be valuable in detecting brain changes that occur before neurocognitive symptoms in collision sport athletes. Quantifying the relationship between changes in these biomarkers and head impacts experienced by female soccer athletes may prove valuable to developing preventative measures for mTBI. This study paired functional magnetic resonance imaging with head impact monitoring to track cerebrovascular reactivity changes throughout a season and to test whether the observed changes could be attributed to mechanical loading experienced by female athletes participating in high school soccer. Marked cerebrovascular reactivity changes were observed in female soccer athletes, relative both to non-collision sport control measures and pre-season measures and were localized to fronto-temporal aspects of the brain. These changes persisted 4-5 months after the season ended and recovered by 8 months after the season. Segregation of the total soccer cohort into cumulative loading groups revealed that population-level changes were driven by athletes experiencing high cumulative loads, although athletes experiencing lower cumulative loads still contributed to group changes. The results of this study imply a non-linear relationship between cumulative loading and cerebrovascular changes with a threshold, above which the risk, of injury likely increases significantly.


Subject(s)
Athletic Injuries/physiopathology , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/physiopathology , Brain/physiopathology , Soccer/injuries , Adolescent , Athletes , Athletic Injuries/diagnostic imaging , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Cerebrovascular Circulation/physiology , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Students , Time Factors
8.
Dev Neuropsychol ; 40(2): 63-8, 2015.
Article in English | MEDLINE | ID: mdl-25961587

ABSTRACT

Visual working memory deficits have been observed in at-risk athletes. This study uses a visual N-back working memory functional magnetic resonance imaging task to longitudinally assess asymptomatic football athletes for abnormal activity. Athletes were increasingly "flagged" as the season progressed. Flagging may provide early detection of injury.


Subject(s)
Athletes , Football/injuries , Magnetic Resonance Imaging/methods , Memory, Short-Term , Adolescent , Female , Humans , Male , Schools
9.
Dev Neuropsychol ; 40(2): 80-4, 2015.
Article in English | MEDLINE | ID: mdl-25961590

ABSTRACT

Cerebrovascular reactivity (CVR) is impaired following brain injury, increasing susceptibility to subsequent injury. CVR was tracked in football and non-collision athletes throughout one season. CVR transiently decreased in football athletes during the first half of the season. Results indicate the brain adapts slowly to increases in loading, increasing risk for injury.


Subject(s)
Athletes , Brain Concussion/physiopathology , Brain Injury, Chronic/physiopathology , Cerebrovascular Disorders/physiopathology , Football/injuries , Adolescent , Humans , Risk Assessment , Schools
SELECTION OF CITATIONS
SEARCH DETAIL
...