Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(13): 8915-8927, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517290

ABSTRACT

A barrier to understanding the factors driving catalysis in the oxygen evolution reaction (OER) is understanding multiple overlapping redox transitions in the OER catalysts. The complexity of these transitions obscure the relationship between the coverage of adsorbates and OER kinetics, leading to an experimental challenge in measuring activity descriptors, such as binding energies, as well as adsorbate interactions, which may destabilize intermediates and modulate their binding energies. Herein, we utilize a newly designed optical spectroelectrochemistry system to measure these phenomena in order to contrast the behavior of two electrocatalysts, cobalt oxyhydroxide (CoOOH) and cobalt-iron hexacyanoferrate (cobalt-iron Prussian blue, CoFe-PB). Three distinct optical spectra are observed in each catalyst, corresponding to three separate redox transitions, the last of which we show to be active for the OER using time-resolved spectroscopy and electrochemical mass spectroscopy. By combining predictions from density functional theory with parameters obtained from electroadsorption isotherms, we demonstrate that a destabilization of catalytic intermediates occurs with increasing coverage. In CoOOH, a strong (∼0.34 eV/monolayer) destabilization of a strongly bound catalytic intermediate is observed, leading to a potential offset between the accumulation of the intermediate and measurable O2 evolution. We contrast these data to CoFe-PB, where catalytic intermediate generation and O2 evolution onset coincide due to weaker binding and destabilization (∼0.19 eV/monolayer). By considering a correlation between activation energy and binding strength, we suggest that such adsorbate driven destabilization may account for a significant fraction of the observed OER catalytic activity in both materials. Finally, we disentangle the effects of adsorbate interactions on state coverages and kinetics to show how adsorbate interactions determine the observed Tafel slopes. Crucially, the case of CoFe-PB shows that, even where interactions are weaker, adsorption remains non-Nernstian, which strongly influences the observed Tafel slope.

2.
Angew Chem Int Ed Engl ; 61(19): e202201146, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35225378

ABSTRACT

High-entropy oxides are oxides consisting of five or more metals incorporated in a single lattice, and the large composition space suggests that properties of interest can be readily optimised. For applications within catalysis, the different local atomic environments result in a distribution of binding energies for the catalytic intermediates. Using the oxygen evolution reaction on the rutile (110) surface as example, here we outline a strategy for the theoretical optimization of the composition. Density functional theory calculations performed for a limited number of sites are used to fit a model that predicts the reaction energies for all possible local atomic environments. Two reaction pathways are considered; the conventional pathway on the coordinatively unsaturated sites and an alternative pathway involving transfer of protons to a bridging oxygen. An explicit model of the surface is constructed to describe the interdependency of the two pathways and identify the composition that maximizes catalytic activity.

3.
J Phys Chem C Nanomater Interfaces ; 124(11): 6337-6348, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32952769

ABSTRACT

We report the high-pressure behavior of two perovskite-like metal formate frameworks with the ethylammonium cation (EtAKCr and EtANaAl) and compare them to previously reported data for EtANaCr. High-pressure single-crystal X-ray diffraction and Raman data for EtAKCr show the occurrence of two high-pressure phase transitions observed at 0.75(16) and 2.4(2) GPa. The first phase transition involves strong compression and distortion of the KO6 subnetwork followed by rearrangement of the -CH2CH3 groups from the ethylammonium cations, while the second involves octahedral tilting to further reduce pore volume, accompanied by further configurational changes of the alkyl chains. Both transitions retain the ambient P21/n symmetry. We also correlate and discuss the influence of structural properties (distortion parameters, bulk modulus, tolerance factors, and compressibility) and parameters calculated by using density functional theory (vibrational entropy, site-projected phonon density of states, and hydrogen bonding energy) on the occurrence and properties of structural phase transitions observed in this class of metal formates.

4.
Nat Commun ; 11(1): 1378, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32170137

ABSTRACT

The production of hydrogen at a large scale by the environmentally-friendly electrolysis process is currently hampered by the slow kinetics of the oxygen evolution reaction (OER). We report a solid electrocatalyst α-Li2IrO3 which upon oxidation/delithiation chemically reacts with water to form a hydrated birnessite phase, the OER activity of which is five times greater than its non-reacted counterpart. This reaction enlists a bulk redox process during which hydrated potassium ions from the alkaline electrolyte are inserted into the structure while water is oxidized and oxygen evolved. This singular charge balance process for which the electrocatalyst is solid but the reaction is homogeneous in nature allows stabilizing the surface of the catalyst while ensuring stable OER performances, thus breaking the activity/stability tradeoff normally encountered for OER catalysts.

5.
ChemSusChem ; 12(23): 5133-5141, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31603278

ABSTRACT

Metal and nitrogen codoped carbons (M-N/Cs) have emerged as promising alternatives to platinum-based catalysts for the oxygen reduction reaction (ORR). DFT calculations are used to investigate the adsorption of anions and impurities from the electrolyte on the active site, modeled as an M-N4 motif embedded in a planar carbon sheet (M=Cr, Mn, Fe, Co). The two-dimensional catalyst structure implies that each metal atom has two potential active sites, one on each side of the sheet. Adsorption of anions or impurities on both sites results in poisoning, but adsorption on one of the sites leads to a modified ORR activity on the remaining site. The calculated adsorption energies show that a number of species adsorb only on one of the two sites under realistic experimental conditions. Furthermore, a few of these adsorbates modify the adsorption energies of the ORR intermediates on the remaining site, in such a way that the limiting potential is improved.

6.
Phys Chem Chem Phys ; 21(8): 4200-4208, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30741281

ABSTRACT

We report the high-pressure properties of two heterometallic perovskite-type metal-organic frameworks (MOFs) templated by dimethylammonium (NH2(CH3)2, DMA+) with the general formula [DMA]MI0.5CrIII0.5(HCOO)3, where MI = Na+ (DMANaCr) and K+ (DMAKCr). The high-pressure Raman scattering studies show crystal instabilities in the 4.0-4.4 GPa and 2.0-2.5 GPa ranges for DMANaCr and DMAKCr, respectively. The mechanism is similar in the two compounds and involves strong deformation of the metal-formate framework, especially pronounced for the subnetwork of CrO6 octahedra, accompanied by substantial compressibility of the DMA+ cations. Comparison with previous high-pressure Raman studies of sodium-chromium heterometallic MOFs show that the stability depends on the templated cation and increases as follows: ammonium < imidazolium < DMA+. Density functional theory (DFT) calculations are performed to get a better understanding of the structural properties leading to the existence of phase transitions. We calculate the energy of the hydrogen bonds (HBs) between the DMA+ cation and the metal formate cage, revealing a stronger interaction in the DMAKCr compound due to a HB arrangement that primarily involves the energetically preferred bonding to KO6 octahedra. This material however also has a smaller structural tolerance factor (TF) and a higher vibrational entropy than DMANaCr. This indicates a more flexible crystal structure, explaining the lower phase transition pressure, as well as the previously observed phase transition at 190 K, which is absent in the DMANaCr compound. The DFT high-pressure simulations show the largest contraction to be along the trigonal axis, leading to a minimal distortion of the HBs formed between the DMA+ cations and the metal-formate sublattice.

7.
J Chem Phys ; 149(16): 164710, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30384711

ABSTRACT

We present an extended metal-coordinated structure obtained by deposition of trimesic acid (TMA) onto the Ag(111) surface under ultra-high vacuum conditions followed by annealing to 510 K. Scanning tunneling microscopy and density functional theory calculations reveal the structure to consist of metal clusters containing seven Ag atoms each, coordinated by six dehydrogenated TMA molecules. The molecules are asymmetrically arranged, resulting in a chiral structure. The calculations confirm that this structure has a lower free energy under the experimental conditions than the hydrogen-bonded structures observed after annealing at lower temperatures. We show that the formation of such large metal clusters is possible due to the low adatom formation energy on silver and the relatively strong Ag-O bond in combination with a good lattice match between the structure and the Ag surface.

8.
Phys Chem Chem Phys ; 20(34): 22284-22295, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30123897

ABSTRACT

We report the synthesis, crystal structure, vibrational and luminescence properties of two heterometallic perovskite-type metal-organic frameworks (MOFs) containing the ammonium cation (NH4+, Am+): [NH4][Na0.5Cr0.5(HCOO)3] (AmNaCr) and [NH4][Na0.5Al0.475Cr0.025(HCOO)3] (AmNaAlCr) in comparison to the previously reported [NH4][Na0.5Al0.5(HCOO)3] (AmNaAl). The room-temperature crystal structure of AmNaCr and AmNaAlCr was determined to be R3[combining macron]. The hydrogen bonding (HB) energy calculated using density functional theory (DFT) agrees well with experimental data, and confirms the existence of almost identical H-bonding in AmNaCr and AmNaAl, with three short hydrogen bonds and a longer trifurcated H-bond. Temperature-dependent Raman measurements supported by differential scanning calorimetry show that AmNaCr does not undergo any structural phase transitions in the 80-400 K temperature range. The high-pressure Raman spectra of AmNaCr show the onset of two structural instabilities near 0.5 and 1.5 GPa. The first instability involves weak distortion of the framework, while the second leads to irreversible amorphization of the sample. High-pressure DFT simulations show that the unit cell of the AmNaCr compound contracts along the c axis, which leads to a shortening of the trifurcated H-bond. The optical properties show that both studied crystals exhibit Cr3+-based emission characteristic of intermediate ligand field strength.

9.
J Mater Chem A Mater ; 6(18): 8507-8513, 2018 May 14.
Article in English | MEDLINE | ID: mdl-30009026

ABSTRACT

Vacancy lattice sites in the metal-organic framework UiO-66 are known to have a profound effect on the material properties. Here we use density functional theory to compare the energies of defect arrangements containing missing linkers and missing metal clusters for different choices of charge compensation. Our results show that the preference for missing metal clusters or missing linker defects depends on the charge compensation as well as the overall concentration of defects in the crystal. Both regimes can be experimentally accessible depending on the synthesis conditions. We investigate the electronic structure of the different types of defects, showing that, despite some changes in the localisation of the frontier orbitals, the electronic energy levels are only weakly affected by the presence of point defects.

10.
J Phys Chem Lett ; 8(24): 6154-6159, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29216715

ABSTRACT

Hybrid organic-inorganic perovskites represent a special class of metal-organic framework where a molecular cation is encased in an anionic cage. The molecule-cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bonding in four AmBX3 formate perovskites: [Am]Zn(HCOO)3, with Am+ = hydrazinium (NH2NH3+), guanidinium (C(NH2)3+), dimethylammonium (CH3)2NH2+, and azetidinium (CH2)3NH2+. We develop a scheme to quantify the strength of hydrogen bonding in these systems from first-principles, which separates the electrostatic interactions between the amine (Am+) and the BX3- cage. The hydrogen-bonding strengths of formate perovskites range from 0.36 to 1.40 eV/cation (8-32 kcalmol-1). Complementary solid-state nuclear magnetic resonance spectroscopy confirms that strong hydrogen bonding hinders cation mobility. Application of the procedure to hybrid lead halide perovskites (X = Cl, Br, I, Am+ = CH3NH3+, CH(NH2)2+) shows that these compounds have significantly weaker hydrogen-bonding energies of 0.09 to 0.27 eV/cation (2-6 kcalmol-1), correlating with lower order-disorder transition temperatures.

11.
Langmuir ; 33(41): 10782-10791, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28968110

ABSTRACT

Molecular conformational flexibility can play an important role in supramolecular self-assembly on surfaces, affecting not least chiral molecular assemblies. To explicitly and systematically investigate the role of molecular conformational flexibility in surface self-assembly, we synthesized a three-bit conformational switch where each of three switching units on the molecules can assume one of two distinct binary positions on the surface. The molecules are designed to promote C-H···N type hydrogen bonds between the switching units. While supramolecular self-assembly based on strong hydrogen-bonding interactions has been widely explored, less is known about the role of such weaker directional interactions for surface self-assembly. The synthesized molecules consist of three nitrogen-containing isoquinoline (IQ) bits connected by ethynylene spokes and terminated by tert-butyl (tBu) groups. Using high-resolution scanning tunnelling microscopy, we investigate the self-assembly of the IQ-tBu molecules on a Au(111) surface under ultrahigh-vacuum conditions. The molecules form extended domains of brick-wall structure where the molecular backbones are packed regularly but without selection of specific molecular conformations. However, statistical analysis of the extended network demonstrates alignment/correlation for the orientations of the switching units indicating specific interactions. The primary interaction motifs in the structure are quantified from DFT calculations, showing that the brick-wall structure is indeed stabilized by two types of weak C-H···N bonds, involving either aromatic hydrogens on the IQ groups or nonaromatic hydrogens on the tBu groups. Analysis of the C-H···N interactions in the brick-wall structure explains the observed distribution and alignment of molecular conformations as well as the overall organization of the molecular surface structures.

14.
J Phys Chem C Nanomater Interfaces ; 121(1): 421-429, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28298951

ABSTRACT

Hybrid organic-inorganic materials are mechanically soft, leading to large thermoelastic effects which can affect properties such as electronic structure and ferroelectric ordering. Here we use a combination of ab initio lattice dynamics and molecular dynamics to study the finite temperature behavior of the hydrazinium and guanidinium formate perovskites, [NH2NH3][Zn(CHO2)3] and [C(NH2)3][Zn(CHO2)3]. Thermal displacement parameters and ellipsoids computed from the phonons and from molecular dynamics trajectories are found to be in good agreement. The hydrazinium compound is ferroelectric at low temperatures, with a calculated spontaneous polarization of 2.6 µC cm-2, but the thermal movement of the cation leads to variations in the instantaneous polarization and eventually breakdown of the ferroelectric order. Contrary to this the guanidinium cation is found to be stationary at all temperatures; however, the movement of the cage atoms leads to variations in the electronic structure and a renormalization in the bandgap from 6.29 eV at 0 K to an average of 5.96 eV at 300 K. We conclude that accounting for temperature is necessary for quantitative modeling of the physical properties of metal-organic frameworks.

15.
Phys Chem Chem Phys ; 18(42): 29316-29329, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27731872

ABSTRACT

We report the development of a forcefield capable of reproducing accurate lattice dynamics of metal-organic frameworks. Phonon spectra, thermodynamic and mechanical properties, such as free energies, heat capacities and bulk moduli, are calculated using the quasi-harmonic approximation to account for anharmonic behaviour due to thermal expansion. Comparison to density functional theory calculations of properties such as Grüneisen parameters, bulk moduli and thermal expansion supports the accuracy of the derived forcefield model. Material properties are also reported in a full analysis of the lattice dynamics of an initial subset of structures including: MOF-5, IRMOF-10, UiO-66, UiO-67, NOTT-300, MIL-125, MOF-74 and MOF-650.

16.
J Phys Chem C Nanomater Interfaces ; 120(17): 9276-9281, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27610208

ABSTRACT

We report an investigation of the "missing-linker phenomenon" in the Zr-based metal-organic framework UiO-66 using atomistic force field and quantum chemical methods. For a vacant benzene dicarboxylate ligand, the lowest energy charge-capping mechanism involves acetic acid or Cl-/H2O. The calculated defect free energy of formation is remarkably low, consistent with the high defect concentrations reported experimentally. A dynamic structural instability is identified for certain higher defect concentrations. In addition to the changes in material properties upon defect formation, we assess the formation of molecular aggregates, which provide an additional driving force for ligand loss. These results are expected to be of relevance to a wide range of metal-organic frameworks.

17.
Chem Soc Rev ; 45(22): 6138-6146, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-26992173

ABSTRACT

The modelling of materials properties and processes from first principles is becoming sufficiently accurate as to facilitate the design and testing of new systems in silico. Computational materials science is both valuable and increasingly necessary for developing novel functional materials and composites that meet the requirements of next-generation technology. A range of simulation techniques are being developed and applied to problems related to materials for energy generation, storage and conversion including solar cells, nuclear reactors, batteries, fuel cells, and catalytic systems. Such techniques may combine crystal-structure prediction (global optimisation), data mining (materials informatics) and high-throughput screening with elements of machine learning. We explore the development process associated with computational materials design, from setting the requirements and descriptors to the development and testing of new materials. As a case study, we critically review progress in the fields of thermoelectrics and photovoltaics, including the simulation of lattice thermal conductivity and the search for Pb-free hybrid halide perovskites. Finally, a number of universal chemical-design principles are advanced.

18.
Sci Rep ; 6: 23676, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27020767

ABSTRACT

Metal-organic frameworks (MOFs) containing d(0) metals such as NH2-MIL-125(Ti), NH2-UiO-66(Zr) and NH2-UiO-66(Hf) are among the most studied MOFs for photocatalytic applications. Despite structural similarities, we demonstrate that the electronic properties of these MOFs are markedly different. As revealed by quantum chemistry, EPR measurements and transient absorption spectroscopy, the highest occupied and lowest unoccupied orbitals of NH2-MIL-125(Ti) promote a long lived ligand-to-metal charge transfer upon photoexcitation, making this material suitable for photocatalytic applications. In contrast, in case of UiO materials, the d-orbitals of Zr and Hf, are too low in binding energy and thus cannot overlap with the π* orbital of the ligand, making both frontier orbitals localized at the organic linker. This electronic reconfiguration results in short exciton lifetimes and diminishes photocatalytic performance. These results highlight the importance of orbital contributions at the band edges and delineate future directions in the development of photo-active hybrid solids.

20.
Nat Commun ; 5: 5803, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25517704

ABSTRACT

Proteins fold into three-dimensional structures, which determine their diverse functions. The conformation of the backbone of each structure is locally at each C(α) effectively described by conformational angles resulting in Ramachandran plots. These, however, do not describe the conformations around hydrogen bonds, which can be non-local along the backbone and are of major importance for protein structure. Here, we introduce the spatial rotation between hydrogen bonded peptide planes as a new descriptor for protein structure locally around a hydrogen bond. Strikingly, this rotational descriptor sampled over high-quality structures from the protein data base (PDB) concentrates into 30 localized clusters, some of which correlate to the common secondary structures and others to more special motifs, yet generally providing a unifying systematic classification of local structure around protein hydrogen bonds. It further provides a uniform vocabulary for comparison of protein structure near hydrogen bonds even between bonds in different proteins without alignment.


Subject(s)
Models, Molecular , Proteins/chemistry , Databases, Protein , Hydrogen Bonding , Protein Structure, Secondary , Protein Structure, Tertiary , Quantum Theory , Rotation , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...