Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1972, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737472

ABSTRACT

Little is known about the placebo effects when comparing training interventions. Consequently, we investigated whether subjects being told they are in the intervention group get better training results compared to subjects being told they are in a control group. Forty athletes (male: n = 31, female: n = 9) completed a 10-week training intervention (age: 22 ± 4 years, height: 183 ± 10 cm, and body mass: 84 ± 15 kg). After randomization, the participants were either told that the training program they got was individualized based on their force-velocity profile (Placebo), or that they were in the control group (Control). However, both groups were doing the same workouts. Measurements included countermovement jump (CMJ), 20-m sprint, one-repetition maximum (1RM) back-squat, a leg-press test, ultrasonography of muscle-thickness (m. rectus femoris), and a questionnaire (Stanford Expectations of Treatment Scale) (Younger et al. in Clin Trials 9(6):767-776, 2012). Placebo increased 1RM squat more than Control (5.7 ± 6.4% vs 0.9 ± 6.9%, [0.26 vs 0.02 Effect Size], Bayes Factor: 5.1 [BF10], p = 0.025). Placebo had slightly higher adherence compared to control (82 ± 18% vs 72 ± 13%, BF10: 2.0, p = 0.08). Importantly, the difference in the 1RM squat was significant after controlling for adherence (p = 0.013). No significant differences were observed in the other measurements. The results suggest that the placebo effect may be meaningful in sports and exercise training interventions. It is possible that ineffective training interventions will go unquestioned in the absence of placebo-controlled trials.


Subject(s)
Athletic Performance , Resistance Training , Adolescent , Adult , Female , Humans , Male , Young Adult , Bayes Theorem , Muscle Strength , Pilot Projects , Resistance Training/methods , Weight Lifting
2.
Scand J Med Sci Sports ; 31(12): 2198-2210, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34473848

ABSTRACT

The present study aimed to examine the effectiveness of an individualized training program based on force-velocity (FV) profiling on jumping, sprinting, strength, and power in athletes. Forty national level team sport athletes (20 ± 4years, 83 ± 13 kg) from ice-hockey, handball, and soccer completed a 10-week training intervention. A theoretical optimal squat jump (SJ)-FV-profile was calculated from SJ with five different loads (0, 20, 40, 60, and 80 kg). Based on their initial FV-profile, athletes were randomized to train toward, away, or irrespective (balanced training) of their initial theoretical optimal FV-profile. The training content was matched between groups in terms of set x repetitions but varied in relative loading to target the different aspects of the FV-profile. The athletes performed 10 and 30 m sprints, SJ and countermovement jump (CMJ), 1 repetition maximum (1RM) squat, and a leg-press power test before and after the intervention. There were no significant group differences for any of the performance measures. Trivial to small changes in 1RM squat (2.9%, 4.6%, and 6.5%), 10 m sprint time (1.0%, -0.9%, and -1.7%), 30 m sprint time (0.9%, -0.6%, and -0.4%), CMJ height (4.3%, 3.1%, and 5.7%), SJ height (4.8%, 3.7%, and 5.7%), and leg-press power (6.7%, 4.2%, and 2.9%) were observed in the groups training toward, away, or irrespective of their initial theoretical optimal FV-profile, respectively. Changes toward the optimal SJ-FV-profile were negatively correlated with changes in SJ height (r = -0.49, p < 0.001). Changes in SJ-power were positively related to changes in SJ-height (r = 0.88, p < 0.001) and CMJ-height (r = 0.32, p = 0.044), but unrelated to changes in 10 m (r = -0.02, p = 0.921) and 30 m sprint time (r = -0.01, p = 0.974). The results from this study do not support the efficacy of individualized training based on SJ-FV profiling.


Subject(s)
Athletic Performance/physiology , Physical Conditioning, Human/methods , Exercise Test , Humans , Leg/physiology , Male , Muscle Strength , Running/physiology , Young Adult
3.
J Physiol ; 592(8): 1887-901, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24492839

ABSTRACT

In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (VO2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their VO2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: -13 ± 54%; PGC-1α: -13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.


Subject(s)
Ascorbic Acid/pharmacology , Exercise , Oxygen Consumption/drug effects , Physical Endurance/drug effects , Vitamin E/pharmacology , Vitamins/pharmacology , Adaptation, Physiological , Adult , Ascorbic Acid/administration & dosage , Dietary Supplements , Double-Blind Method , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Female , Humans , Male , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/genetics , Transcription Factors/metabolism , Vitamin E/administration & dosage , Vitamins/administration & dosage , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...