Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 33(8): e2922, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776043

ABSTRACT

Ecological restoration is critical for recovering degraded ecosystems but is challenged by variable success and low predictability. Understanding which outcomes are more predictable and less variable following restoration can improve restoration effectiveness. Recent theory asserts that the predictability of outcomes would follow an order from most to least predictable from coarse to fine community properties (physical structure > taxonomic diversity > functional composition > taxonomic composition) and that predictability would increase with more severe environmental conditions constraining species establishment. We tested this "hierarchy of predictability" hypothesis by synthesizing outcomes along an aridity gradient with 11 grassland restoration projects across the United States. We used 1829 vegetation monitoring plots from 227 restoration treatments, spread across 52 sites. We fit generalized linear mixed-effects models to predict six indicators of restoration outcomes as a function of restoration characteristics (i.e., seed mixes, disturbance, management actions, time since restoration) and used variance explained by models and model residuals as proxies for restoration predictability. We did not find consistent support for our hypotheses. Physical structure was among the most predictable outcomes when the response variable was relative abundance of grasses, but unpredictable for total canopy cover. Similarly, one dimension of taxonomic composition related to species identities was unpredictable, but another dimension of taxonomic composition indicating whether exotic or native species dominated the community was highly predictable. Taxonomic diversity (i.e., species richness) and functional composition (i.e., mean trait values) were intermittently predictable. Predictability also did not increase consistently with aridity. The dimension of taxonomic composition related to the identity of species in restored communities was more predictable (i.e., smaller residuals) in more arid sites, but functional composition was less predictable (i.e., larger residuals), and other outcomes showed no significant trend. Restoration outcomes were most predictable when they related to variation in dominant species, while those responding to rare species were harder to predict, indicating a potential role of scale in restoration predictability. Overall, our results highlight additional factors that might influence restoration predictability and add support to the importance of continuous monitoring and active management beyond one-time seed addition for successful grassland restoration in the United States.


Subject(s)
Ecosystem , Grassland , Poaceae , Seeds , Biodiversity
2.
Glob Chang Biol ; 29(17): 4706-4710, 2023 09.
Article in English | MEDLINE | ID: mdl-37312638

ABSTRACT

Billions of dollars are spent annually on ecological restoration efforts around the world and yet successful attainment of restoration targets still falls short in many regions. Globally, ecosystem restoration is becoming increasingly challenged with changes in climate. Years with extreme climatic events that limit plant establishment, such as severe drought, heatwaves, and floods are projected to increase in frequency. A critical evaluation of current ecological restoration practices and changes to those practices are needed to attain global restoration targets. For plant restoration, many efforts globally focus on planting in a single year following disturbance. The odds of restoration efforts being conducted in a year that is inconducive to plant establishment may be calculated using climatic risk data. We propose a risk-mitigation approach to restoration wherein plantings are conducted across multiple years for projects in a bet-hedging strategy and evaluated through an adaptive management approach.


Subject(s)
Ecosystem , Plants , Floods , Droughts
4.
Nat Ecol Evol ; 5(9): 1283-1290, 2021 09.
Article in English | MEDLINE | ID: mdl-34294898

ABSTRACT

Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.


Subject(s)
Ecosystem , Seedlings , Climate Change , Humans , Plants , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...