Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(12): 21377-21387, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36475629

ABSTRACT

We report on the nanoparticle-size-dependent onset of quantum tunneling of electrons across the subnanometer gaps in three different sizes (30, 50, and 80 nm) of highly uniform gold nanosphere (AuNS) dimers. For precision plasmonics, the gap distance is systematically controlled at the level of single C-C bonds via a series of alkanedithiol linkers (C2-C16). Parallax-corrected high-resolution transmission electron microscope (HRTEM) imaging and subsequent tomographic reconstruction are employed to resolve the nm to subnm interparticle gap distances in AuNS dimers. Single-particle scattering experiments on three different sizes of AuNS dimers reveal that for the larger dimers the onset of quantum tunneling regime occurs at larger gap distances: 0.96 ± 0.04 nm (C6) for 80 nm, 0.83 ± 0.03 nm (C5) for 50 nm, and 0.72 ± 0.02 nm (C4) for 30 nm dimers. 2D nonlocal and quantum-corrected model (QCM) calculations qualitatively explain the physical origin for this experimental observation: the lower curvature of the larger particles leads to a higher tunneling current due to a larger effective conductivity volume in the gap. Our results have possible implications in scenarios where precise geometrical control over plasmonic properties is crucial such as in hybrid (molecule-metal) and/or quantum plasmonic devices. More importantly, this study constitutes the closest experimental results to the theory for a 3D sphere dimer system and offers a reference data set for comparison with theory/simulations.

2.
Nanoscale ; 10(46): 21721-21731, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30431039

ABSTRACT

Different classes of plasmonic nanoparticles functionalized with the non-resonant Raman reporter molecule 4-MBA are tested for their SERS signal brightness at the single-particle level: gold nanoparticles, hollow gold/silver nanoshells, gold nanostars, and gold core/gold satellite particles. Correlative SERS/SEM experiments on a set of particles from each class enable the unambiguous identification of single particles by electron microscopy as well as the characterization of both their elastic (LSPR) and inelastic (SERS) scattering spectra. Experimental observations are compared with predictions from FEM computer simulations based on 3D models derived from representative TEM/SEM images. Single gold nanostars and single gold core/gold satellite particles exhibit a detectable SERS signal under the given experimental conditions, while single gold nanoparticles and single hollow gold/silver nanoshells are not detectable.

SELECTION OF CITATIONS
SEARCH DETAIL
...