Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
2.
Acad Radiol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38637239

ABSTRACT

RATIONALE AND OBJECTIVES: It remains difficult to predict longitudinal outcomes in long-COVID, even with chest CT and functional MRI. 129Xe MRI reflects airway dysfunction, measured using ventilation defect percent (VDP) and in long-COVID patients, MRI VDP was abnormal, suggestive of airways disease. While MRI VDP and quality-of-life improved 15-month post-COVID infection, both remained abnormal. To better understand the relationship of airways disease and quality-of-life improvements in patients with long-COVID, we extracted 129Xe ventilation MRI textures and generated machine-learning models in an effort to predict improved quality-of-life, 15-month post-infection. MATERIALS AND METHODS: Long-COVID patients provided written-informed consent to 3-month and 15-month post-infection visits. Pyradiomics was used to extract 129Xe ventilation MRI texture features, which were ranked using a Random-Forest classifier. Top-ranking features were used in classification models to dichotomize patients based on St. George's Respiratory Questionnaire (SGRQ) score improvement greater than the minimal-clinically-important-difference (MCID). Classification performance was evaluated using the area under the receiver-operator-characteristic-curve (AUC), sensitivity, and specificity. RESULTS: 120 texture features were extracted from 129Xe ventilation MRI in 44 long-COVID participants (54 ± 14 years), including 30 (52 ± 12 years) with ΔSGRQ≥MCID and 14 (58 ± 18 years) with ΔSGRQ

4.
Allergol Int ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38485545

ABSTRACT

Airway mucus is a hydrogel with unique biophysical properties due to its primary water composition and a small proportion of large anionic glycoproteins or mucins. The predominant mucins in human mucus, MUC5AC and MUC5B, are secreted by specialized cells within the airway epithelium both in normal conditions and in response to various stimuli. Their relative proportions are correlated with specific inflammatory responses and disease mechanisms. The dysregulation of mucin expression is implicated in numerous respiratory diseases, including asthma, COPD, and cystic fibrosis, where the pathogenic role of mucus has been extensively described yet often overlooked. In airway diseases, excessive mucus production or impaired mucus clearance leads to mucus plugging, with secondary airway occlusion that contribute to airflow obstruction, asthma severity and poor control. Eosinophils and Charcot Leyden crystals in sputum contribute to the mucus burden and tenacity. Mucin may also contribute to eosinophil survival. Other mechanisms, including eosinophil-independent IL-13 release, mast-cell activation and non-type-2 (T2) cytokines, are also likely to participate in mucus pathobiology. An accurate assessment of mucus and its clinical and functional consequences require a thorough approach that includes evaluation of cellular predominance in sputum, airway cytokines and other inflammatory markers, mucus characteristics and composition and structural and functional impact measured by advanced lung imaging. This review, illustrated with clinical scenarios, provides an overview of current methods to assess mucus and its relevance to the choice of biologics to treat patients with severe asthma.

6.
NMR Biomed ; 37(6): e5121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423986

ABSTRACT

Although hyperpolarized (HP) 129Xe ventilation MRI can be carried out within a breath hold, it is still challenging for many sick patients. Compressed sensing (CS) is a viable alternative to accelerate this approach. However, undersampled images with identical sampling ratios differ from one another. Twenty subjects (n = 10 healthy and n = 10 patients with asthma) were scanned using a GE MR750 3 T scanner, acquiring fully sampled 2D multi-slice HP 129Xe lung ventilation images (10 s breath hold, 128 × 80 (FE × PE-frequency encoding × phase encoding) and 16 slices). Using fully sampled data, 500 variable-density Cartesian random undersampling patterns were generated, each at eight different sampling ratios from 10% to 80%. The parallel imaging and compressed sensing (PICS) command from BART was employed to reconstruct undersampled data. The signal to noise ratio (SNR), structural similarity index measurement (SSIM) and sidelobe to peak ratio of each were subsequently compared. There was a high degree of variation in both SNR and SSIM results from each of the 500 masks of each sampling rate. As the undersampling increases, there is more variation in the quantifying metrics, for both healthy and asthmatic individuals. Our study shows that random undersampling poses a significant challenge when applied at sampling ratios less than 60%, despite fulfilling CS's incoherency criteria. Such low sampling ratios will result in a large variety of undersampling patterns. Therefore, skipped segments of k-space cannot be allowed to happen randomly at low sampling rates. By optimizing the sampling pattern, CS will reach its full potential and be able to be applied to a highly undersampled 129Xe lung dataset.


Subject(s)
Lung , Magnetic Resonance Imaging , Signal-To-Noise Ratio , Xenon Isotopes , Humans , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Male , Female , Adult , Asthma/diagnostic imaging , Middle Aged , Data Compression
7.
Acad Radiol ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38378325

ABSTRACT

RATIONALE AND OBJECTIVES: Emergent evidence in several respiratory diseases supports translational potential for Phase-Resolved Functional Lung (PREFUL) MRI to spatially quantify ventilation but its feasibility and physiological relevance have not been demonstrated in patients with asthma. This study compares PREFUL-derived ventilation defect percent (VDP) in severe asthma patients to healthy controls and measures its responsiveness to bronchodilator therapy and relation to established measures of airways disease. MATERIALS AND METHODS: Forty-one adults with severe asthma and seven healthy controls performed same-day free-breathing 1H MRI, 129Xe MRI, spirometry, and oscillometry. A subset of participants (n = 23) performed chest CT and another subset of participants with asthma (n = 19) repeated 1H MRI following the administration of a bronchodilator. VDP was calculated for both PREFUL and 129Xe MRI. Additionally, the percent of functional small airways disease was determined from CT parametric response maps (PRMfSAD). RESULTS: PREFUL VDP measured pre-bronchodilator (19.1% [7.4-43.3], p = 0.0002) and post-bronchodilator (16.9% [6.1-38.4], p = 0.0007) were significantly greater than that of healthy controls (7.5% [3.7-15.5]) and was significantly decreased post-bronchodilator (from 21.9% [10.1-36.9] to 16.9% [6.1-38.4], p = 0.0053). PREFUL VDP was correlated with spirometry (FEV1%pred: r = -0.46, p = 0.0023; FVC%pred: r = -0.35, p = 0.024, FEV1/FVC: r = -0.46, p = 0.0028), 129Xe MRI VDP (r = 0.39, p = 0.013), and metrics of small airway disease (CT PRMfSAD: r = 0.55, p = 0.021; Xrs5 Hz: r = -0.44, p = 0.0046, and AX: r = 0.32, p = 0.044). CONCLUSION: PREFUL-derived VDP is responsive to bronchodilator therapy in asthma and is associated with measures of airflow obstruction and small airway dysfunction. These findings validate PREFUL VDP as a physiologically relevant and accessible ventilation imaging outcome measure in asthma.

8.
J Magn Reson Imaging ; 59(4): 1120-1134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37548112

ABSTRACT

The respiratory consequences of acute COVID-19 infection and related symptoms tend to resolve 4 weeks post-infection. However, for some patients, new, recurrent, or persisting symptoms remain beyond the acute phase and persist for months, post-infection. The symptoms that remain have been referred to as long-COVID. A number of research sites employed 129 Xe magnetic resonance imaging (MRI) during the pandemic and evaluated patients post-infection, months after hospitalization or home-based care as a way to better understand the consequences of infection on 129 Xe MR gas-exchange and ventilation imaging. A systematic review and comprehensive search were employed using MEDLINE via PubMed (April 2023) using the National Library of Medicine's Medical Subject Headings and key words: post-COVID-19, MRI, 129 Xe, long-COVID, COVID pneumonia, and post-acute COVID-19 syndrome. Fifteen peer-reviewed manuscripts were identified including four editorials, a single letter to the editor, one review article, and nine original research manuscripts (2020-2023). MRI and MR spectroscopy results are summarized from these prospective, controlled studies, which involved small sample sizes ranging from 9 to 76 participants. Key findings included: 1) 129 Xe MRI gas-exchange and ventilation abnormalities, 3 months post-COVID-19 infection, and 2) a combination of MRI gas-exchange and ventilation abnormalities alongside persistent symptoms in patients hospitalized and not hospitalized for COVID-19, 1-year post-infection. The persistence of respiratory symptoms and 129 Xe MRI abnormalities in the context of normal or nearly normal pulmonary function test results and chest computed tomography (CT) was consistent. Longitudinal improvements were observed in long-term follow-up of long-COVID patients but mean 129 Xe gas-exchange, ventilation heterogeneity values and symptoms remained abnormal, 1-year post-infection. Pulmonary functional MRI using inhaled hyperpolarized 129 Xe gas has played a role in detecting gas-exchange and ventilation abnormalities providing complementary information that may help develop our understanding of the root causes of long-COVID. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 5.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Xenon Isotopes , Prospective Studies , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods
13.
Front Physiol ; 14: 1133334, 2023.
Article in English | MEDLINE | ID: mdl-37234422

ABSTRACT

Introduction: The ideal contrast agents for ventilation SPECT and MRI are Technegas and 129Xe gas, respectively. Despite increasing interest in the clinical utility of ventilation imaging, these modalities have not been directly compared. Therefore, our objective was to compare the ventilation defect percent (VDP) assessed by Technegas SPECT and hyperpolarized 129Xe MRI in patients scheduled to undergo lung cancer resection with and without pre-existing obstructive lung disease. Methods: Forty-one adults scheduled to undergo lung cancer resection performed same-day Technegas SPECT, hyperpolarized 129Xe MRI, spirometry, and diffusing capacity of the lung for carbon monoxide (DLCO). Ventilation abnormalities were quantified as the VDP using two different methods: adaptive thresholding (VDPT) and k-means clustering (VDPK). Correlation and agreement between VDP quantified by Technegas SPECT and 129Xe MRI were determined by Spearman correlation and Bland-Altman analysis, respectively. Results: VDP measured by Technegas SPECT and 129Xe MRI were correlated (VDPT: r = 0.48, p = 0.001; VDPK: r = 0.63, p < 0.0001). A 2.0% and 1.6% bias towards higher Technegas SPECT VDP was measured using the adaptive threshold method (VDPT: 23.0% ± 14.0% vs. 21.0% ± 5.2%, p = 0.81) and k-means method (VDPK: 9.4% ± 9.4% vs. 7.8% ± 10.0%, p = 0.02), respectively. For both modalities, higher VDP was correlated with lower FEV1/FVC (SPECT VDPT: r = -0.38, p = 0.01; MRI VDPK: r = -0.46, p = 0.002) and DLCO (SPECT VDPT: r = -0.61, p < 0.0001; MRI VDPK: r = -0.68, p < 0.0001). Subgroup analysis revealed that VDP measured by both modalities was significantly higher for participants with COPD (n = 13) than those with asthma (n = 6; SPECT VDPT: p = 0.007, MRI VDPK: p = 0.006) and those with no history of obstructive lung disease (n = 21; SPECT VDPT: p = 0.0003, MRI VDPK: p = 0.0003). Discussion: The burden of ventilation defects quantified by Technegas SPECT and 129Xe MRI VDP was correlated and greater in participants with COPD when compared to those without. Our observations indicate that, despite substantial differences between the imaging modalities, quantitative assessment of ventilation defects by Technegas SPECT and 129Xe MRI is comparable.

15.
Radiology ; 307(2): e222557, 2023 04.
Article in English | MEDLINE | ID: mdl-36749209

ABSTRACT

Background In individuals with postacute COVID-19 syndrome (PACS) and normal pulmonary function, xenon 129 (129Xe) MRI ventilation defects, abnormal quality-of-life scores, and exercise limitation were reported 3 months after infection; the longitudinal trajectory remains unclear. Purpose To measure and compare pulmonary function, exercise capacity, quality of life, and 129Xe MRI ventilation defect percent (VDP) in individuals with PACS evaluated 3 and 15 months after COVID-19 infection. Materials and Methods In this prospective study, participants with PACS aged 18-80 years were enrolled between July 2020 and August 2021 from two quaternary care centers. 129Xe MRI VDP, diffusing capacity of lung for carbon monoxide (Dlco), spirometry, oscillometry, 6-minute walk distance (6MWD), and St George Respiratory Questionnaire (SGRQ) scores were evaluated 3 months and 15 months after COVID-19 infection. Differences between time points were evaluated using the paired t test. Multivariable models were generated to explain exercise capacity and quality-of-life improvement. Odds ratios (ORs) were used to evaluate potential treatment influences. Results Overall, 53 participants (mean age, 55 years ± 18 [SD]; 27 women) attended both 3- and 15-month visits and were included in the analysis. The mean values for 129Xe MRI VDP (5.8% and 4.2%; P = .003), forced expiratory volume in the 1st second of expiration percent predicted (84% and 90%; P = .001), Dlco percent predicted (86% and 99%; P = .002), and SGRQ score (35 and 25; P < .001) improved between the 3- and 15-month visit. VDP measured 3 months after COVID-19 infection predicted the change in 6MWD (ß = -0.643, P = .006), while treatment with respiratory medication at 3 months predicted an improved quality-of-life score at 15 months (OR, 4.0; 95% CI: 1.2, 13.8; P = .03). Conclusion Pulmonary function, gas exchange, exercise capacity, quality of life, and 129Xe MRI ventilation defect percent (VDP) improved in participants with postacute COVID-19 syndrome at 15 months compared with 3 months after infection. VDP measured at 3 months after infection correlated with improved exercise capacity, while treatment with respiratory medication was associated with an improved quality-of-life score 15 months after infection. ClinicalTrials.gov registration no. NCT05014516 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Vogel-Claussen in this issue.


Subject(s)
COVID-19 , Respiration Disorders , Female , Humans , Middle Aged , Lung , Magnetic Resonance Imaging/methods , Prospective Studies , Quality of Life , Adolescent , Aged , Aged, 80 and over , Male
16.
Thorax ; 78(4): 418-421, 2023 04.
Article in English | MEDLINE | ID: mdl-36596692

ABSTRACT

129Xe MRI red blood cell to alveolar tissue plasma ratio (RBC:TP) abnormalities have been observed in ever-hospitalised and never-hospitalised people with postacute COVID-19 syndrome (PACS). But, it is not known if such abnormalities resolve when symptoms and quality-of-life scores improve. We evaluated 21 participants with PACS, 7±4 months (baseline) and 14±4 months (follow-up) postinfection. Significantly improved diffusing capacity of the lung for carbon monoxide (DLCO, Δ=14%pred ;95%CI 7 to 21, p<0.001), postexertional dyspnoea (Δ=-0.7; 95%CI=-0.2 to -1.2, p=0.019), St George's Respiratory Questionnaire-score (SGRQ Δ=-6; 95% CI=-1 to -11, p=0.044) but not RBC:TP (Δ=0.03; 95% CI=0.01 to 0.05, p=0.051) were observed at 14 months. DLCO correlated with RBC:TP (r=0.60, 95% CI=0.22 to 0.82, p=0.004) at 7 months. While DLCO and SGRQ measurements improved, these values did not normalise 14 months post-infection. ClinicalTrials.gov NCT04584671.


Subject(s)
COVID-19 , Humans , Follow-Up Studies , Lung/diagnostic imaging , Magnetic Resonance Imaging , Quality of Life , Pulmonary Diffusing Capacity
18.
Eur Respir J ; 61(1)2023 01.
Article in English | MEDLINE | ID: mdl-36137590

ABSTRACT

BACKGROUND: Autoimmunity has been reported in patients with severe coronavirus disease 2019 (COVID-19). We investigated whether anti-nuclear/extractable-nuclear antibodies (ANAs/ENAs) were present up to a year after infection, and if they were associated with the development of clinically relevant post-acute sequalae of COVID-19 (PASC) symptoms. METHODS: A rapid-assessment line immunoassay was used to measure circulating levels of ANAs/ENAs in 106 convalescent COVID-19 patients with varying acute phase severities at 3, 6 and 12 months post-recovery. Patient-reported fatigue, cough and dyspnoea were recorded at each time point. Multivariable logistic regression model and receiver operating curves were used to test the association of autoantibodies with patient-reported outcomes and pro-inflammatory cytokines. RESULTS: Compared to age- and sex-matched healthy controls (n=22) and those who had other respiratory infections (n=34), patients with COVID-19 had higher detectable ANAs at 3 months post-recovery (p<0.001). The mean number of ANA autoreactivities per individual decreased between 3 and 12 months (from 3.99 to 1.55) with persistent positive titres associated with fatigue, dyspnoea and cough severity. Antibodies to U1-snRNP and anti-SS-B/La were both positively associated with persistent symptoms of fatigue (p<0.028, area under the curve (AUC) 0.86) and dyspnoea (p<0.003, AUC=0.81). Pro-inflammatory cytokines such as tumour necrosis factor (TNF)-α and C-reactive protein predicted the elevated ANAs at 12 months. TNF-α, D-dimer and interleukin-1ß had the strongest association with symptoms at 12 months. Regression analysis showed that TNF-α predicted fatigue (ß=4.65, p=0.004) and general symptomaticity (ß=2.40, p=0.03) at 12 months. INTERPRETATION: Persistently positive ANAs at 12 months post-COVID are associated with persisting symptoms and inflammation (TNF-α) in a subset of COVID-19 survivors. This finding indicates the need for further investigation into the role of autoimmunity in PASC.


Subject(s)
Autoantibodies , COVID-19 , Humans , Post-Acute COVID-19 Syndrome , Tumor Necrosis Factor-alpha , Cough , Antibodies, Antinuclear , Cytokines , Fatigue
19.
Radiol Cardiothorac Imaging ; 5(6): e230054, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38166343

ABSTRACT

Purpose To determine if proton (1H) MRI-derived specific ventilation is responsive to bronchodilator (BD) therapy and associated with clinical biomarkers of type 2 airway inflammation and airways dysfunction in severe asthma. Materials and Methods In this prospective study, 27 participants with severe asthma (mean age, 52 years ± 9 [SD]; 17 female, 10 male) and seven healthy controls (mean age, 47 years ± 16; five female, two male), recruited between 2018 and 2021, underwent same-day spirometry, respiratory oscillometry, and tidal breathing 1H MRI. Participants with severe asthma underwent all assessments before and after BD therapy, and type 2 airway inflammatory biomarkers were determined (blood eosinophil count, sputum eosinophil percentage, sputum eosinophil-free granules, and fraction of exhaled nitric oxide) to generate a cumulative type 2 biomarker score. Specific ventilation was derived from tidal breathing 1H MRI and its response to BD therapy, and relationships with biomarkers of type 2 airway inflammation and airway dysfunction were evaluated. Results Mean MRI specific ventilation improved with BD inhalation (from 0.07 ± 0.04 to 0.11 ± 0.04, P < .001). Post-BD MRI specific ventilation (P = .046) and post-BD change in MRI specific ventilation (P = .006) were greater in participants with asthma with type 2 low biomarkers compared with participants with type 2 high biomarkers of airway inflammation. Post-BD change in MRI specific ventilation was correlated with change in forced expiratory volume in 1 second (r = 0.40, P = .04), resistance at 5 Hz (r = -0.50, P = .01), resistance at 19 Hz (r = -0.42, P = .01), reactance area (r = -0.54, P < .01), and reactance at 5 Hz (r = 0.48, P = .01). Conclusion Specific ventilation evaluated with tidal breathing 1H MRI was responsive to BD therapy and was associated with clinical biomarkers of airways disease in participants with severe asthma. Keywords: MRI, Severe Asthma, Ventilation, Type 2 Inflammation Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Moore and Chandarana in this issue.


Subject(s)
Asthma , Protons , Male , Humans , Female , Middle Aged , Prospective Studies , Asthma/diagnostic imaging , Inflammation , Biomarkers , Magnetic Resonance Imaging/methods
20.
Respir Med ; 202: 106982, 2022 10.
Article in English | MEDLINE | ID: mdl-36116144

ABSTRACT

BACKGROUND: Airway wall thickening and excess airway mucus occur in asthma and chronic obstructive pulmonary disease (COPD), but few studies have investigated the relationship between them. Our objective was to determine the association between computed tomography (CT) airway wall thickening in segmental airways proximal to airways with or without mucus plugging in patients with asthma and COPD. METHODS: Mucus plugging was scored using a CT bronchopulmonary segment-based scoring system in asthma and COPD patients. For each of the 19 segmental airways, a mucus plug was defined as complete occlusion of one or more of the daughter branches (sub-segmental airways) by mucus. CT airway measurements were generated for each of the 19 segmental airways: wall-area-percentage (WA%), lumen area (LA), and total airway count (TAC) (VIDA Diagnostics Inc.). Multivariable logistic regression models were constructed for the presence of mucus plugs with corresponding CT measurement and adjusted by covariates; each of the 19 segments was treated as a nested variable. RESULTS: A total of 33 participants were evaluated. Participants had a mean age of 60 ± 15yrs and there were n = 14 (42%) males. There were 16 (48%) participants with a diagnosis of asthma and 17 (52%) with a COPD diagnosis. The mean FEV1 was 53 ± 21%pred and FEV1/FVC was 54 ± 15%. The mean mucus score in all participants was 15 ± 4 (min = 0, max = 19). Multivariable logistic regression analysis showed the presence of airway mucus was significantly associated with increased CT WA% (ß = 7.30, p = 0.004) and reduced TAC (ß = -0.06, p = 0.045). CONCLUSIONS: There was increased airway wall thickness and reduced airway counts on CT in segments where there was a distal mucus plug compared to segments without mucus plugs in asthma and COPD.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Aged , Asthma/complications , Asthma/diagnostic imaging , Female , Humans , Lung , Male , Middle Aged , Mucus , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...