Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Anal Chim Acta ; 1187: 339127, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34753570

ABSTRACT

The Theory of Sampling as developed by Pierre Gy is a complete theory that describes sampling errors and how to obtain a representative sample. Unfortunately Gy's formula for prediction of the Fundamental Sampling Error (FSE) can be difficult to use in practice, as it is only valid for binary materials with same size distribution of analyte containing fragments and matrix fragments. An extended Gy's formula for estimation of FSE is derived from Gy's definition of constitutional heterogeneity. This formula is exact with no assumptions and allows prediction of FSE for any particulate material with any number of particle classes in contrast to Gy's formula. The difference is that the only assumption made is that the sampled material can be divided into classes with similar properties for the fragments within each class. The extended Gy's formula is validated by model experiments sampling mixtures of 3-7 components with a riffle splitter with 18 chutes. In most cases the observed sampling error was well predicted by the newly derived, extended Gy's formula. However, in some experiments the observed sampling errors were lower than FSE. This can be explained by the sampling paradox, and the effect is calculated by a new function, the Fundamental Sampling Uncertainty, FSU. The observed results are typically in excellent agreement with the predictions (the predicted uncertainties were on average 0.5% points lower than the observed values). The extended Gy's formula described here is ideal for use in teaching of sampling methods because the experiments can be set up using materials with accurately known properties. The proposed new formula allows accurate prediction of FSE and FSU for complex materials that contain more than two types of particles.


Subject(s)
Uncertainty
2.
Environ Sci Pollut Res Int ; 28(18): 23133-23142, 2021 May.
Article in English | MEDLINE | ID: mdl-33442805

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are produced by anthropogenic activities, such as traffic and domestic heating. Due to their adverse effects to humans and natural habitats, the presence of PAHs in the environment needs to be monitored. Plants are known as natural accumulators of persistent organic pollutants (POPs) and can therefore be used for the monitoring of PAHs emitted into the environment. Contamination by PAHs also occurs in the Arctic such as Greenland due to long-range transport through air. However, as anthropogenic activities in the Arctic are increasing, there is a need to investigate the distribution of PAHs due to local emission sources. In this study, we present a systematic sampling approach to identify the influence of PAH sources in an area next to the town of Ilulissat in Greenland. Composite crowberry samples have been collected north of Ilulissat, where the town itself, an incineration site and Ilulissat airport are possible emission sources for PAHs. Matrix solid-phase extraction was used for the extraction of PAHs and the chemical analysis was performed by gas chromatography with mass spectrometry detection (GC-MS). In total, 18 out of 19 investigated PAHs could be detected in Empetrum nigrum in a concentration range of 0.69 to 93.01 µg/kgdry weight. Higher concentrations for most of the targeted PAHs were found close to the suspected emission sources and also along the road connecting them. For pyrene, the correlation between the concentration and the distance from the emission sources could be modelled and visualized using a two-dimensional exponential variogram and ordinary kriging. The range in which the samples were spatially correlated was approximately 500 m. Our results show that local emission sources contribute to the spatial distribution patterns of PAHs. Monitoring of pollution by airborne PAHs is therefore needed even in areas far from major pollution sources such as Ilulissat, Greenland. E. nigrum showed to be a feasible species for biomonitoring of PAHs due to its large abundance in the sampling area and its widespread availability in the Artic region.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Cities , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Greenland , Humans , Polycyclic Aromatic Hydrocarbons/analysis
3.
Chemosphere ; 207: 421-429, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29807341

ABSTRACT

The reuse of digested sludge from wastewater treatment plants (WWTPs) as soil fertilizer poses a risk for contamination of soil and water environments. The present study provides a new approach for investigating the exposure of hydrophobic organic chemicals in sewage sludge. The methodology of equilibrium sampling with multiple thicknesses of silicone was successfully validated and applied to complex sludge matrices. Polycyclic aromatic hydrocarbon (PAH) concentrations in silicone (Csilicone) were determined and compared across four WWTPs. Activity ratios (ARs), defined as Csilicone at equilibrium with digested sludge (final product) over Csilicone at equilibrium with secondary sludge (intermediate product), were in the range 0.85-20 with all except one AR>1. These ARs thus revealed increased thermodynamic potential of both parent and alkylated PAHs in digested sludge compared with secondary sludge, and thereby higher exposure of PAHs in sludge after digestion than before digestion. This observation can be explained by the concept of "solvent depletion" as organic matter decreased by a factor of 1.3 during digestion, resulting in reduced sorptive capacity and increased freely dissolved concentrations (Cfree). The PAHs with logKow > 6 had ARs close to 1.3, whereas PAHs with logKow < 6 showed higher ARs than the organic matter decrease factor of 1.3. Cfree in digested sludge were higher than reported in rural soil and generally consistent with levels reported for Baltic Sea sediment.


Subject(s)
Environmental Monitoring/methods , Polycyclic Aromatic Hydrocarbons/analysis , Sewage/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Thermodynamics
4.
Environ Sci Pollut Res Int ; 21(13): 7838-46, 2014.
Article in English | MEDLINE | ID: mdl-24638833

ABSTRACT

Indoor plants can remove volatile organic compounds (VOCs) from the air. The majority of knowledge comes from laboratory studies where results cannot directly be transferred to real-life settings. The aim of this study was to develop an experimental test system to assess VOC removal by indoor plants which allows for an improved real-life simulation. Parameters such as relative humidity, air exchange rate and VOC concentration are controlled and can be varied to simulate different real-life settings. For example, toluene diffusion through a needle gave concentrations in the range of 0.10-2.35 µg/L with deviations from theoretical values of 3.2-10.5%. Overall, the system proved to be functional for the assessment of VOC removal by indoor plants with Hedera helix reaching a toluene removal rate of up to 66.5 µg/m(2)/h. The mode of toluene exposure (semi-dynamic or dynamic) had a significant influence on the removal rate obtained by H. helix.


Subject(s)
Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Hedera/metabolism , Volatile Organic Compounds/metabolism , Air Movements , Humidity , Toluene/analysis , Toluene/metabolism , Volatile Organic Compounds/analysis
5.
Anal Chem ; 85(1): 28-32, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23206196

ABSTRACT

A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection of mixtures of common volatile organic compounds. Amounts down to ca. 0.5 ng (on column) could be detected for most compounds and with a chromatographic performance comparable to that of GC/EIMS. In the positive mode, LTP ionization resulted in a compound specific formation of molecular ions M(+•), protonated molecules [M + H](+), and adduct ions such as [(M + O) + H](+) and [M + NO](+). The ion patterns seemed unique for each of the analyzed compound classes and can therefore be useful for identification of functional groups. A total of 20 different compounds within 8 functional groups were analyzed.

6.
Sci Total Environ ; 417-418: 13-20, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22264923

ABSTRACT

The increase of agricultural intensity over the last century in rural Denmark has meant that ammonia has been regarded as a significant environmental problem. The deterioration of murals in rural churches is also a matter of concern and focused attention on the potential for ammonia to accelerate damage. Ammonia concentrations measured over 12 months inside and outside nine churches often show a spring maximum outdoors, hinting at the importance of farming activities. The ammonia concentrations are on average some three times greater indoors than outdoors and mass balance calculations suggest that this arises from the decomposition of ammonium nitrate aerosols. The emissions may result from reactions of aerosols deposited at the alkaline walls, which also leads to calcium nitrate becoming the major soluble salt at the very surface layer. The quantities remain small enough, that they probably do not participate in salt damage to the murals.

7.
Chemosphere ; 76(8): 1150-5, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19457538

ABSTRACT

The toxic glycoalkaloids produced by the potato plant (Solanum tuberosum L.) have previously been found in upper soil from a potato field during several months. Further insight into the fate of the glycoalkaloids is needed, as only little information about their degradation in soil is available. Degradation of the glycoalkaloid, alpha-solanine, has been followed for 42d in three agricultural soils with common texture and carbon contents. A similar degradation pattern was found in all soils, and the kinetics was well described by a sum of two first-order equations. Overall, degradation rates for the initial first reaction were in the range 0.22-1.64d(-1). Estimated half-lives were in the range 1.8-4.1d for the three top soils at 15 degrees C; the fastest degradation was observed in the sandy soil. The major proportion of alpha-solanine in the sandy soil was degraded by the fast process, while the proportion was lower for the two other soils. Fast degradation appeared to be related to the presence of low amount of sorbents. Additionally, degradation was followed at 5 degrees C in A- and C-horizon soil from the sandy location, and for both horizons the half-lives were of similar length (4.7-8.7d). For the slow process, degradation rates were in the range 0.000-0.123d(-1), and residuals were still present in all soils and all temperatures at the end of the experiment (d 42). Overall, fast degradation was found in both top- and subsoil even at low temperatures, and the risk for alpha-solanine leaching to the groundwater appears to be low.


Subject(s)
Soil , Solanine/metabolism , Solanum tuberosum/chemistry , Agriculture , Biodegradation, Environmental , Half-Life , Kinetics , Plant Tubers/chemistry , Solanine/toxicity
8.
Anal Chem ; 81(10): 4010-4, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19382755

ABSTRACT

This paper presents the first membrane inlet method that can be used together with field portable mass spectrometers for the analysis of semivolatile pharmaceuticals (pethidine, benzophenone, and cocaine) and environmental pollutants (terbutryne and butylated hydroxyl toluene (BHT)) dissolved in organic micro extracts. A microliter of the organic extract is simply injected into a closed hot cell membrane inlet (hc-MIMS), and an electron ionization mass spectrum of the vaporized semivolatile sample molecules can be recorded shortly thereafter. Detection limits at low picomole quantities or low/sub ng/microL concentrations in the extract are demonstrated for solutes in methanol, ethanol, acetone, and toluene. A linear correlation between analyte concentration and signal was found in the range of 1-100 ng/microL, and the relative standard deviation (RSD) was approximately 10%. As a practical example we demonstrate the detection of cocaine in extracts from dried coca leaves. The analysis of organic micro extracts using hc-MIMS represents a considerable extension of the type and complexity of analytes that can be measured using a field portable MIMS system, since it does not require special and field tedious modifications to the standard MIMS system.


Subject(s)
Environmental Pollutants/analysis , Mass Spectrometry/instrumentation , Pharmaceutical Preparations/analysis , Benzophenones/analysis , Butylated Hydroxytoluene/analysis , Cocaine/analysis , Mass Spectrometry/methods , Meperidine/analysis , Triazines/analysis , Triazines/chemistry , Volatilization
9.
J Environ Sci Health B ; 43(5): 365-75, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18576216

ABSTRACT

The fate of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) was studied in soil. Labeled glyphosate was used to be able to distinguish the measured quantities of glyphosate and AMPA from the background values since the soil was sampled in a field where glyphosate had been used formerly. After addition of labeled glyphosate, the disappearance of glyphosate and the formation and disappearance of AMPA were monitored. The resulting curves were fitted according to a new EU guideline. The best fit of the glyphosate degradation data was obtained using a first-order multi compartment (FOMC) model. DT(50) values of 9 days (glyphosate) and 32 days (AMPA) indicated relatively rapid degradation. After an aging period of 6 months, the leaching risk of each residue was determined by treating the soil with pure water or a phosphate solution (pH 6), to simulate rain over a non-fertilized or fertilized field, respectively. Significantly larger (p < 0.05) amounts of aged glyphosate and AMPA were extracted from the soil when phosphate solution was used as an extraction agent, compared with pure water. This indicates that the risk of leaching of aged glyphosate and AMPA residues from soil is greater in fertilized soil. The blank soil, to which 252 g glyphosate/ha was applied 21 months before this study, contained 0.81 ng glyphosate/g dry soil and 10.46 ng AMPA/g dry soil at the start of the study. Blank soil samples were used as controls without glyphosate addition. After incubation of the blank soil samples for 6 months, a significantly larger amount of AMPA was extracted from the soil treated with phosphate solution than from that treated with pure water. To determine the degree of uptake of aged glyphosate residues by crops growing in the soil, (14)C-labeled glyphosate was applied to soil 6.5 months prior to sowing rape and barley seeds. After 41 days, 0.006 +/- 0.002% and 0.005 +/- 0.001% of the applied radioactivity was measured in rape and barley, respectively.


Subject(s)
Environmental Monitoring , Excitatory Amino Acid Agonists/analysis , Glycine/analogs & derivatives , Herbicides/analysis , Soil Pollutants/analysis , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/analysis , Agriculture , Carbon Radioisotopes , Excitatory Amino Acid Agonists/chemistry , Glycine/analysis , Glycine/chemistry , Herbicides/chemistry , Humans , Isotope Labeling , Risk Assessment , Soil Pollutants/chemistry , Time Factors , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/chemistry , Glyphosate
10.
Pest Manag Sci ; 63(2): 141-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17125153

ABSTRACT

It is shown that potentially persistent transformation products can be formed from the herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and possible leaching to groundwater is discussed. A similar process to the formation of BAM (2,6-dichlorobenzamide) from the herbicide dichlobenil (2,6-dichlorobenzonitrile) can be anticipated as bromoxynil and ioxynil are analogues of dichlobenil and they are degraded by the enzymes nitrilase, nitrile hydratase and amidase. A biodegradation study using cultured Variovorax sp. DSM 11402, a species commonly found in soil, demonstrated that ioxynil and bromoxynil were fully transformed into their corresponding amides in 2-5 days. These amides were not further degraded within 18 days, and formation of other degradation products was not observed. These results are in agreement with biodegradation experiments with dichlobenil. In soil, dichlobenil is transformed into its only observed degradation product BAM, which is persistent and mobile, and has been found in 19% of 5000 samples of Danish groundwater. Variovorax sp. is known to degrade the non-halogenated analogue benzamide, suggesting that degradation of the three amides may be hindered by the halogenated substituents (meta-Br; meta-I; ortho-Cl). This hypothesis is supported by QSAR modelling of fundamental properties. Using a new optimised liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, the sorption and desorption properties of bromoxynil and ioxynil were characterised in sandy topsoil at four concentration levels. The estimated sorption coefficient K(d) was 1.4 L kg(-1) for bromoxynil and 5.4 L kg(-1) for ioxynil, indicating weak to moderate sorption to topsoil. Desorption of the herbicides showed that they were strongly and irreversible bound to the soil (K(des) > K(d)). The amount of herbicide desorbed depended on the initial concentration level. At low levels, K(des) values were higher, indicating stronger binding than at higher levels. The isocratic LC-MS/MS method developed for simultaneous detection of bromoxynil, ioxynil and their main degradation products is described. Using negative electrospray ionisation (ESI-), the detection limits were 0.4-1.0 microg L(-1), with relative standard deviations of 4-10% (n = 10) using direct injection without clean-up steps. The standard curves showed linearity in the range 5-100 microg L(-1) with r(2) > 0.992.


Subject(s)
Herbicides/chemistry , Nitriles/chemistry , Proteobacteria/metabolism , Soil Microbiology , Adsorption , Biodegradation, Environmental , Chromatography, Liquid/methods , Dose-Response Relationship, Drug , Herbicides/metabolism , Iodobenzenes/chemistry , Kinetics , Mass Spectrometry/methods , Quantitative Structure-Activity Relationship , Species Specificity , Water Supply
11.
J Chromatogr A ; 1090(1-2): 1-9, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-16196129

ABSTRACT

This paper compares the extraction effectiveness of six different commonly applied extraction techniques for the determination of PCBs in soil. The techniques included are Soxhlet, Soxtec, ultrasonication extraction, supercritical fluid extraction, microwave-assisted extraction and accelerated solvent extraction. For none of the techniques were the extraction conditions optimized, but instead the extraction parameters were based on the experience from previous successful investigation published by a number of research groups worldwide. In general, all extraction techniques were capable of producing accurate data for one native PCB contaminated soil diluted with another soil sample to obtain two concentration levels. It could therefore be concluded that any of the investigated techniques can be used with success if the extraction conditions applied are chosen wisely.


Subject(s)
Chemical Fractionation/methods , Chromatography, Supercritical Fluid/methods , Microwaves , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Soil/analysis , Ultrasonics , Acetone , Hexanes , Soil Pollutants/analysis , Solvents
12.
J Am Soc Mass Spectrom ; 16(4): 446-55, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15792713

ABSTRACT

The purpose of the work presented here was to evaluate the influence of solution composition and analyte characteristics on responsiveness to analysis with negative ion electrospray ionization mass spectrometry. The responses of a series of structurally diverse acidic molecules were compared in various solvents. Response was generally observed to be higher in methanol than acetonitrile and response for all analytes was poorer when water was mixed with the organic solvent. A positive correlation between negative ion ESI-MS response and log P was observed when either acetonitrile or methanol was used as the electrospray solvent. This result was expected because analytes with significant nonpolar character should be particularly responsive to ESI-MS analysis due to their higher affinity for electrospray droplet surfaces. It was also predicted that highly acidic analytes would be most responsive to analysis with negative ion ESI-MS due to their tendency to form negative ions. However, for the analytes studied here, acidity was found not to have a consistent influence on ESI-MS response. Many of the highly acidic molecules were quite polar and, consequently, were poorly responsive. Furthermore, the deprotonated molecular ion was detected for a number of molecules with very high pKa values, which would not be expected to form negative ions in the bulk solution. Ultimately, these results indicate that acidity is not a conclusive parameter for prediction of the relative magnitudes of negative ion ESI-MS response among a diverse series of analytes. Analyte polarity does; however, appear to be useful for this purpose.


Subject(s)
Organic Chemicals/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Hydrogen-Ion Concentration , Molecular Structure , Solvents , Static Electricity
13.
J Environ Qual ; 33(2): 619-27, 2004.
Article in English | MEDLINE | ID: mdl-15074814

ABSTRACT

Leaching to the ground water of metabolites from the herbicide metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5-one] has been measured in a Danish field experiment in concentrations exceeding the European Union threshold limit for pesticides at 0.1 microg/L. In the present work, degradation and sorption of metribuzin and the metabolites desamino-metribuzin (DA), diketo-metribuzin (DK), and desamino-diketo-metribuzin (DADK) were studied in a Danish sandy loam topsoil and subsoil from the field in question, using accelerated solvent extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Fast dissipation of metribuzin and the metabolites was observed in the topsoil, with 50% disappearance within 30 to 40 d. A two-compartment model described degradation of metribuzin and DA, whereas that of DADK could be described using first-order kinetics. Part of the dissipation was probably due to incorporation into soil organic matter. Degradation in subsoil occurred very slowly, with extrapolated half-lives of more than one year. Sorption in the topsoil followed the order DA > metribuzin > DK > DADK. Subsoil sorption was considerably lower, and was hardly measurable for metribuzin and DK. Abiotic degradation was considerably higher in the topsoil than the subsoil, especially concerning the de-amination step, indicating that organic matter may be related to the degradation process. The present results confirm observations of metribuzin and transformation product leaching made in the field experiment and demonstrate the need for knowledge on primary metabolites when assessing the risk for pesticide leaching.


Subject(s)
Herbicides/metabolism , Soil Pollutants/analysis , Triazines/metabolism , Water Pollutants/analysis , Adsorption , Chromatography, Liquid , Environmental Monitoring , Half-Life , Herbicides/chemistry , Mass Spectrometry , Silicon Dioxide , Solubility , Triazines/chemistry
14.
J Agric Food Chem ; 52(6): 1452-7, 2004 Mar 24.
Article in English | MEDLINE | ID: mdl-15030195

ABSTRACT

Beta-thujaplicin (beta-TH) is a toxic tropolone derivative present in the heartwood of western red cedar (Thuja plicata) and is used as a preservative and antimicrobial additive in a number of commercial goods. beta-TH released from western red cedar timber used outdoor and from other products containing beta-TH may transfer to soil and leach to groundwater and surface waters. The objective of this study was to quantify the adsorption of beta-TH to goethite as a typical model for geosorbents. Adsorption was studied using pH-adjusted goethite suspensions with solid:solution ratios of 1:500, 0.01 M NaNO(3) electrolyte, and 20 degrees C. beta-TH was determined using a new capillary zone electrophoresis (CZE) method providing a detection limit of 0.21 microM. Near-sorption equilibrium was attained within 48 h. beta-TH showed maximum adsorption at low pH (3.8) and a 70% drop in adsorption from pH 6.2 to 8.8. The Langmuir type adsorption isotherm at pH 5.5 approached a maximum adsorption of 220 micromol/g (= 6.2 micromol/m(2)), which is more than twice the amount of phosphate adsorbed under similar conditions. The affinity of beta-TH for goethite is low as compared with organic ligands such as citrate, oxalate, and 2,4-dihydroxybenzoate. The adsorption data and FTIR analyses indicate that beta-TH is most likely adsorbed as monodentate mononuclear surface complexes at the surface of goethite. Hydrophobic adsorption is thought to contribute to the adsorption, in particular at low pH. The strong adsorption of beta-TH to goethite suggests low mobility in most soil environments, the risk of contamination increasing in soils with high pH (calcareous material), low contents of iron and aluminum oxides, phyllosilicates, and organic matter.


Subject(s)
Electrophoresis, Capillary/methods , Iron Compounds/chemistry , Monoterpenes/analysis , Monoterpenes/chemistry , Tropolone/analogs & derivatives , Tropolone/analysis , Tropolone/chemistry , Adsorption , Hydrogen-Ion Concentration , Minerals , Soil/analysis
15.
J Chromatogr A ; 986(2): 179-90, 2003 Feb 07.
Article in English | MEDLINE | ID: mdl-12597625

ABSTRACT

Static extraction, supercritical fluid extraction (SFE), pressurized liquid extraction (PLE) and Soxhlet extraction were compared for simultaneous extraction of di(2-ethylhexyl) phthalate (DEHP) and nonionic surfactants from house dust. Homogenized office floor dust from a vacuum cleaner dust bag ("standard dust") was used for the evaluation. One portion of the extracts was used for analysis of nonionic surfactants with LC-MS and another portion was used for DEHP analysis with GC-MS. The extraction yield of DEHP was comparable for all the methods whereas SFE and PLE were the most efficient extraction techniques for the nonionic surfactants. The PLE extraction was found most suitable as a routine method for simultaneous extraction of both types of compounds and was used in a field study of floor dust from 15 Danish schools. The mean concentration of DEHP in the school dust samples was approximately 4 times higher than observed in other studies of dust from homes in different countries. The concentrations of nonionic surfactants were one order of magnitude lower than soap and linear alkylbenzene sulfonates measured in other studies of floor dust from offices and other public buildings. However, for the first time nonionic surfactants have been identified in house dust.


Subject(s)
Diethylhexyl Phthalate/isolation & purification , Dust/analysis , Schools , Surface-Active Agents/isolation & purification , Chromatography, Liquid/methods , Denmark , Gas Chromatography-Mass Spectrometry/methods , Reproducibility of Results
16.
Chemosphere ; 51(2): 143-52, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12586147

ABSTRACT

In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl(3)), 1,1,1-trichloroethane (CH(3)CCl(3)), tetrachloromethane (CCl(4)), trichloroethene (C(2)HCl(3)) and tetrachloroethene (C(2)Cl(4)) was studied in anoxic laboratory experiments designed to simulate denitrifying conditions in water unsaturated topsoil. Active denitrification was demonstrated by measuring the release of 15N in N(2) to the headspace from added 15N labeled nitrate. The degradation of chlorinated aliphatic compounds was followed by measuring their concentrations in the headspace above the soil. The headspace concentrations of all the chlorinated solvents except CH(3)CCl(3) were significantly (P

Subject(s)
Hydrocarbons, Chlorinated/chemistry , Soil/analysis , Solvents/chemistry , Water , Biodegradation, Environmental , Oxidation-Reduction
17.
J Chromatogr A ; 957(1): 79-87, 2002 May 24.
Article in English | MEDLINE | ID: mdl-12102315

ABSTRACT

A method developed for study of metribuzin degradation in soil is presented. LC-MS-MS and electrospray ionisation was used for analysis of metribuzin and the metabolites deaminometribuzin (DA), diketometribuzin (DK) and deaminodiketometribuzin (DADK). Soil samples were extracted by pressurized liquid extraction using methanol-water (75:25) at 60 degrees C. In general, recoveries were about 75% for metribuzin, DA and DADK and their detection limit in soil was 1.25 microg/kg. Lower sensitivity was observed for DK, with detection limit at 12.5 microg/kg and recovery about 50%.


Subject(s)
Chromatography, Liquid/methods , Herbicides/analysis , Mass Spectrometry/methods , Soil Pollutants/analysis , Triazines/analysis , Pressure , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...