Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21(2): 2263-78, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23389206

ABSTRACT

We report on design, manufacture, and testing of a Slewing Mirror Telescope (SMT), the first of its kind and a part of Ultra-Fast Flash Observatory-pathfinder (UFFO-p) for space-based prompt measurement of early UV/optical light curves from Gamma-Ray Bursts (GRBs). Using a fast slewing mirror of 150 mm diameter mounted on a 2 axis gimbal stage, SMT can deliver the images of GRB optical counterparts to the intensified CCD detector within 1.5~1.8 s over ± 35 degrees in the slewing field of view. Its Ritchey-Chrétien telescope of 100 mm diameter provides a 17 × 17 arcmin² instantaneous field of view. Technical details of design, construction, the laboratory performance tests in space environments for this unique SMT are described in conjunction with the plan for in-orbit operation onboard the Lomonosov satellite in 2013.


Subject(s)
Lenses , Radiometry/instrumentation , Spacecraft/instrumentation , Telescopes , Equipment Design , Equipment Failure Analysis , Gamma Rays , Photons , Ultraviolet Rays
2.
Radiat Meas ; 35(5): 473-83, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12442742

ABSTRACT

The study of radiation background components in the near-Earth space is very important for different branches of space research, in particular for space dosimetry and for the planning of gamma-astronomy experiments. Detailed information on the neutral components (gamma-quanta, neutrons) of background radiation was obtained during the Grif-1 experiment onboard Mir orbital station (OS). The measurements of fluxes of 0.05-50 MeV gamma-quanta and >30 MeV neutrons with a large area instrument (approximately 250 cm2 for gamma-quanta, approximately 30 cm2 for neutrons) as well as corresponding charged particle measurements (0.4-1.5 MeV electrons, 1-200 MeV protons) were made during this experiment. The background components induced by the station's own radiation as well as the albedo gamma-rays from the Earth's atmosphere were revealed as the result of data analysis for about 600 h of observation. A mathematical model describing the latitude and energy dependences of atmospheric albedo gamma-rays as well as of those of gamma-quanta produced in the material of the station due to cosmic ray interactions was developed. An analytical approximation of the spectrum of induced gamma-rays from radioactive isotopes stored in the station and instrument's materials is presented. The dynamics of gamma-quantum background fluxes during the geomagnetic disturbances of January 10-11, 1997 are discussed. An analytical representation of the latitude dependence of the integral flux of neutrons with >30 MeV is given.


Subject(s)
Cosmic Radiation , Gamma Rays , Neutrons , Radiation Monitoring/instrumentation , Space Flight/instrumentation , Brazil , Electrons , Elementary Particle Interactions , Extraterrestrial Environment , Protons , Spacecraft/instrumentation
3.
Adv Space Res ; 21(12): 1785-8, 1998.
Article in English | MEDLINE | ID: mdl-11542900

ABSTRACT

The measurements of high-energy neutron (with energies approximately 30-300 MeV) and proton (with energies approximately 1-200 MeV) fluxes are being conducted on-board "Mir-Spectr" orbital complex. Neutrons are detected by the undirected (FOV approximately 4 pi sr) scintillator spectrometer, consisting of 4 identical CsI(T1) detector units (the effective area for neutrons approximately 30 cm2). The gamma-quanta, which can be also detected by this instrument, are separated from neutrons by the analysis of the scintillator output pulse shape. To exclude registration of charged particles an anticoincidence plastic scintillator shield is realized in each detector unit. The proton fluxes are measured by the telescope based on 3 semiconductor detectors with small geometry factor (approximately 1 cm2 x sr). As the first result of the experiment the upper limit of the integral flux of local and albedo neutrons in the equatorial region (L<1. 1) was estimated. The results of this measurements can be useful for the radiation security. Also, the neutrons of solar flares can be detected in this experiment.


Subject(s)
Neutrons , Protons , Radiation Monitoring/instrumentation , Solar Activity , Space Flight/instrumentation , Gamma Rays , Spacecraft/instrumentation , Spectrometry, Gamma
SELECTION OF CITATIONS
SEARCH DETAIL
...