Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Helicobacter ; 29(3): e13097, 2024.
Article in English | MEDLINE | ID: mdl-38819071

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) can evade the host's immune response and persist for a long time on the gastric mucosa. T helper (Th) cells appear to be involved in the control of H. pylori bacteria but promote mucosal inflammation. In contrast, regulatory T cells (Tregs) may reduce inflammation but promote H. pylori persistence. CC motif chemokine receptor 6 (CCR6) is involved in the migration of various cells into inflamed gastric mucosa. In this study, we examined CCR6+ Th cells and CCR6+ Tregs during H. pylori infection in humans. MATERIALS AND METHODS: Isolation of cells from blood and mucosal biopsies, magnetic separation of В cells, CD4+ and CD4+CCR6+CD45RO+ T cells, antigen-specific activation, B cell response in vitro, flow cytometry, determination of CD4+CD25hiFoxP3+ Tregs and various groups of Th cells. RESULTS: CD4+CCR6+ blood lymphocytes from healthy donors included Th cells and Tregs. These CCR6+ Th cells produced proinflammatory cytokines and also stimulated plasma cell maturation and antibody production in vitro. H. pylori gastritis and peptic ulcer disease were associated with an increase in the number of circulate CD4+CCR6+CD45RO+ cells and the percentage of Th1, Th17 and Th1/17 cells in this lymphocyte subgroup. In H. pylori-positive patients, circulating CD4+CCR6+ cells contained a higher proportion of H. pylori-specific cells compared with their CD4+CCR6- counterparts. H. pylori infection strongly increased the content of CD4+ lymphocytes in the inflamed gastric mucosa, with the majority of these CD4+ lymphocytes expressing CCR6. CD4+CCR6+ lymphocytes from H. pylori-infected stomach included Tregs and in vivo activated T cells, some of which produced interferon-γ without ex vivo stimulation. CONCLUSION: H. pylori infection causes an increase in the number of mature CD4+CCR6+ lymphocytes in the blood, with a pro-inflammatory shift in their composition and enrichment of the gastric mucosa with CD4+CCR6+ lymphocytes, including CCR6+ Th1 cells and Tregs.


Subject(s)
Gastric Mucosa , Helicobacter Infections , Helicobacter pylori , Receptors, CCR6 , T-Lymphocytes, Regulatory , Adult , Female , Humans , Male , Middle Aged , Flow Cytometry , Gastric Mucosa/immunology , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/immunology , Receptors, CCR6/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology
2.
Cells ; 12(11)2023 05 31.
Article in English | MEDLINE | ID: mdl-37296639

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) serves as a substrate for protein deacetylases sirtuins and poly(ADP-ribose) polymerases, which are involved in the regulation of DNA double-strand break (DSB) repair molecular machinery by various mechanisms. However, the impact of NAD bioavailability on DSB repair remains poorly characterized. Herein, using immunocytochemical analysis of γH2AX, a marker for DSB, we investigated the effect of the pharmacological modulation of NAD levels on DSB repair capacity in human dermal fibroblasts exposed to moderate doses of ionizing radiation (IR). We demonstrated that NAD boosting with nicotinamide riboside did not affect the efficiency of DSB elimination after the exposure of cells to IR at 1 Gy. Moreover, even after irradiation at 5 Gy, we did not observe any decrease in intracellular NAD content. We also showed that, when the NAD pool was almost completely depleted by inhibition of its biosynthesis from nicotinamide, cells were still able to eliminate IR-induced DSB, though the activation of ATM kinase, its colocalization with γH2AX and DSB repair capacity were reduced in comparison to cells with normal NAD levels. Our results suggest that NAD-dependent processes, such as protein deacetylation and ADP-ribosylation, are important but not indispensable for DSB repair induced by moderate doses of IR.


Subject(s)
NAD , Radiation, Ionizing , Humans , NAD/metabolism , Biological Availability , Poly(ADP-ribose) Polymerases/metabolism , DNA/metabolism , Fibroblasts/metabolism
3.
J Biol Chem ; 298(12): 102615, 2022 12.
Article in English | MEDLINE | ID: mdl-36265580

ABSTRACT

Nicotinamide riboside (NR) is an effective precursor of nicotinamide adenine dinucleotide (NAD) in human and animal cells. NR supplementation can increase the level of NAD in various tissues and thereby improve physiological functions that are weakened or lost in experimental models of aging or various human pathologies. However, there are also reports questioning the efficacy of NR supplementation. Indeed, the mechanisms of its utilization by cells are not fully understood. Herein, we investigated the role of purine nucleoside phosphorylase (PNP) in NR metabolism in mammalian cells. Using both PNP overexpression and genetic knockout, we show that after being imported into cells by members of the equilibrative nucleoside transporter family, NR is predominantly metabolized by PNP, resulting in nicotinamide (Nam) accumulation. Intracellular cleavage of NR to Nam is prevented by the potent PNP inhibitor Immucillin H in various types of mammalian cells. In turn, suppression of PNP activity potentiates NAD synthesis from NR. Combining pharmacological inhibition of PNP with NR supplementation in mice, we demonstrate that the cleavage of the riboside to Nam is strongly diminished, maintaining high levels of NR in blood, kidney, and liver. Moreover, we show that PNP inhibition stimulates Nam mononucleotide and NAD+ synthesis from NR in vivo, in particular, in the kidney. Thus, we establish PNP as a major regulator of NR metabolism in mammals and provide evidence that the health benefits of NR supplementation could be greatly enhanced by concomitant downregulation of PNP activity.


Subject(s)
NAD , Purine-Nucleoside Phosphorylase , Humans , Mice , Animals , NAD/metabolism , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Niacinamide/pharmacology , Niacinamide/metabolism , Pyridinium Compounds , Mammals/metabolism
4.
Int J Mol Sci ; 22(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573263

ABSTRACT

Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.


Subject(s)
Equilibrative Nucleoside Transport Proteins/metabolism , Membrane Transport Proteins/metabolism , Niacinamide/analogs & derivatives , Pyridinium Compounds/metabolism , Ribonucleosides/metabolism , Aging/metabolism , Cytosol/metabolism , Equilibrative Nucleoside Transport Proteins/genetics , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Membrane Transport Proteins/analysis , Membrane Transport Proteins/genetics , Metabolomics , NAD/analysis , NAD/metabolism , Niacinamide/analysis , Niacinamide/metabolism , Nicotinamide Mononucleotide/metabolism , Phosphorylation/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pyridinium Compounds/analysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribonucleosides/analysis
5.
Vaccine ; 38(42): 6645-6655, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32873403

ABSTRACT

The influenza vaccine Grippol® Quadrivalent (GQ) is a new vaccine, containing the adjuvant Polyoxidonium® and recombinant hemagglutinins from 4 strains of the influenza virus in amount of 5-6 µg of each hemagglutinin per human dose. These doses of antigens are about 3 times less than the standard dose recommended by WHO. We sought to characterize the immune response to the GQ vaccine and to determine the contribution of the adjuvant in this response. BALB/c mice were vaccinated with GQ or with adjuvant-free antigen mixtures (AGs). Then, the antibody response, the number of memory T cells in the spleen, and the functional properties of splenocytes were determined. The vaccine GQ has been shown to induce antibodies to all 4 influenza hemagglutinins. The vaccination with GQ caused a strong increase in the AG-induced proliferation and production of Th2 cytokines ex vivo. These effects were equal to effect achieved by standard dose of antigens. Vaccination also caused the accumulation of CD4+ large lymphocytes with the phenotype of central and effector memory T cells in the spleen. The GQ vaccine enhanced the cytolytic activity of natural killer (NK) cells, whereas the adjuvant-free mixture of AGs in lowered and standard doses did not affect NK activity. We did not find a noticeable response of Th1 and CD8+ T cells to vaccination. In vitro, the GQ vaccine stimulated the maturation of human monocyte-derived dendritic cells (DCs) enhancing the expression of HLA-DR, CD80, CD83, CD86 and ICOSL molecules. Polyoxidonium without AGs also induced expression of ICOSL, which plays an important role in T-dependent humoral immune response. In summary, the low-dose influenza vaccine GQ with Polyoxidonium adjuvant is immunogenic, induces a Th2-polarized T-cell response and CD4+ memory T cells maturation, activates the production of antibodies to influenza hemagglutinins, and increases the activity of NK cells.


Subject(s)
Influenza Vaccines , Adjuvants, Immunologic , Animals , Antibodies, Viral , CD8-Positive T-Lymphocytes , Immunity, Humoral , Killer Cells, Natural , Mice , Mice, Inbred BALB C , Piperazines , Polymers
6.
Metabolites ; 9(12)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795381

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is an essential redox carrier, whereas its degradation is a key element of important signaling pathways. Human cells replenish their NAD contents through NAD biosynthesis from extracellular precursors. These precursors encompass bases nicotinamide (Nam) and nicotinic acid and their corresponding nucleosides nicotinamide riboside (NR) and nicotinic acid riboside (NAR), now collectively referred to as vitamin B3. In addition, extracellular NAD+ and nicotinamide mononucleotide (NMN), and potentially their deamidated counterparts, nicotinic acid adenine dinucleotide (NAAD) and nicotinic acid mononucleotide (NAMN), may serve as precursors of intracellular NAD. However, it is still debated whether nucleotides enter cells directly or whether they are converted to nucleosides and bases prior to uptake into cells. Here, we studied the metabolism of extracellular NAD+ and its derivatives in human HEK293 cells using normal and serum-free culture medium. Using medium containing 10% fetal bovine serum (FBS), mono- and dinucleotides were degraded to the corresponding nucleosides. In turn, the nucleosides were cleaved to their corresponding bases. Degradation was also observed in culture medium alone, in the absence of cells, indicating that FBS contains enzymatic activities which degrade NAD+ intermediates. Surprisingly, NR was also rather efficiently hydrolyzed to Nam in the absence of FBS. When cultivated in serum-free medium, HEK293 cells efficiently cleaved NAD+ and NAAD to NMN and NAMN. NMN exhibited rather high stability in cell culture, but was partially metabolized to NR. Using pharmacological inhibitors of plasma membrane transporters, we also showed that extracellular cleavage of NAD+ and NMN to NR is a prerequisite for using these nucleotides to maintain intracellular NAD contents. We also present evidence that, besides spontaneous hydrolysis, NR is intensively metabolized in cell culture by intracellular conversion to Nam. Our results demonstrate that both the cultured cells and the culture medium mediate a rather active conversion of NAD+ intermediates. Consequently, in studies of precursor supplementation and uptake, the culture conditions need to be carefully defined.

7.
Int J Mol Sci ; 19(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563212

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form, NADP, are the major coenzymes of redox reactions in central metabolic pathways. Nicotinamide adenine dinucleotide is also used to generate second messengers, such as cyclic ADP-ribose, and serves as substrate for protein modifications including ADP-ribosylation and protein deacetylation by sirtuins. The regulation of these metabolic and signaling processes depends on NAD availability. Generally, human cells accomplish their NAD supply through biosynthesis using different forms of vitamin B3: Nicotinamide (Nam) and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR). These precursors are converted to the corresponding mononucleotides NMN and NAMN, which are adenylylated to the dinucleotides NAD and NAAD, respectively. Here, we have developed an NMR-based experimental approach to detect and quantify NAD(P) and its biosynthetic intermediates in human cell extracts. Using this method, we have determined NAD, NADP, NMN and Nam pools in HEK293 cells cultivated in standard culture medium containing Nam as the only NAD precursor. When cells were grown in the additional presence of both NAR and NR, intracellular pools of deamidated NAD intermediates (NAR, NAMN and NAAD) were also detectable. We have also tested this method to quantify NAD+ in human platelets and erythrocytes. Our results demonstrate that ¹H NMR spectroscopy provides a powerful method for the assessment of the cellular NAD metabolome.


Subject(s)
Cell Culture Techniques/methods , Metabolomics/methods , NAD/analysis , Blood Platelets/chemistry , Erythrocytes/chemistry , HEK293 Cells , Humans , Metabolic Networks and Pathways , NADP/analysis , Niacin/analysis , Niacinamide/analysis , Proton Magnetic Resonance Spectroscopy
8.
Methods Mol Biol ; 1644: 105-111, 2017.
Article in English | MEDLINE | ID: mdl-28710756

ABSTRACT

Flow cytometry is a powerful tool for the analysis of apoptosis, the process that directly determines cell fate after the action of different stresses. Here, we describe a flow cytometry method for the assessment of early and late stages of apoptosis in non-fixed cultured cells using SYTO16, DRAQ7, and PO-PRO1 dyes simultaneously. This multicolor flow cytometry procedure requires 45 min for completion and provides a quantitative assessment of cell viability. It can be useful in evaluating the cytotoxic properties of new drugs, and antitumor interventions.


Subject(s)
Apoptosis , Flow Cytometry/methods , Leukemia, Monocytic, Acute/pathology , Humans , Tumor Cells, Cultured
9.
Methods Mol Biol ; 1644: 129-138, 2017.
Article in English | MEDLINE | ID: mdl-28710759

ABSTRACT

Methods commonly used for detection of DNA double-strand breaks (DSBs) and analysis of cell death are generally time-consuming, and, therefore, any improvements in these techniques are important for researchers and clinicians. At present, flow cytometry is the most rapid method for detection of DSBs and cell viability. In this chapter, we provide our experience and methodological modification of flow cytometry protocol for the detection of γ-H2AX, a well-known marker of DSBs, in fixed mammalian fibroblasts. The modifications permit a reduction in the time required for DSB detection by flow cytometry.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Flow Cytometry/methods , Histones/metabolism , Skin/metabolism , Animals , Animals, Newborn , Cells, Cultured , DNA/genetics , DNA/radiation effects , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Mesocricetus , Skin/cytology , Skin/radiation effects , X-Rays
10.
Methods Mol Biol ; 1644: 187-194, 2017.
Article in English | MEDLINE | ID: mdl-28710765

ABSTRACT

H2AX phosphorylation at Ser139 (formation of γ-H2AX) is an indicator of double-strand breaks in DNA (DSBs) after the action of different genotoxic stresses, including ionizing radiation, environmental agents, and chemotherapy drugs. The sites of DSBs can be visualized as focal sites of γ-H2AX using antibodies and immunofluorescence microscopy. The microscopy technique is the most sensitive method of DSB detection in individual cells. It is useful for experimental research, radiation biodosimetry, and clinical practice. In this chapter, we provide an immunochemical protocol for γ-H2AX labeling and analysis by confocal microscopy. The advantage of the assay is that it enables the quantitation of γ-H2AX foci in individual cells in different phases of the cell cycle.


Subject(s)
Cell Cycle , Fibroblasts/cytology , Fluorescent Antibody Technique , Microscopy, Fluorescence/methods , Animals , Cells, Cultured , DNA Damage , Fibroblasts/metabolism , Histones/metabolism , Humans , Mesocricetus
11.
BMC Mol Biol ; 16: 18, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26458748

ABSTRACT

BACKGROUND: Studies of DNA damage response are critical for the comprehensive understanding of age-related changes in cells, tissues and organisms. Syrian hamster cells halt proliferation and become presenescent after several passages in standard conditions of cultivation due to what is known as "culture stress". Using proliferating young and non-dividing presenescent cells in primary cultures of Syrian hamster fibroblasts, we defined their response to the action of radiomimetic drug bleomycin (BL) that induces DNA double-strand breaks (DSBs). RESULTS: The effect of the drug was estimated by immunoblotting and immunofluorescence microscopy using the antibody to phosphorylated histone H2AX (gH2AX), which is generally accepted as a DSB marker. At all stages of the cell cycle, both presenescent and young cells demonstrated variability of the number of gH2AX foci per nucleus. gH2AX focus induction was found to be independent from BL-hydrolase expression. Some differences in DSB repair process between BL-treated young and presenescent Syrian hamster cells were observed: (1) the kinetics of gH2AX focus loss in G0 fibroblasts of young culture was faster than in cells that prematurely stopped dividing; (2) presenescent cells were characterized by a slower recruitment of DSB repair proteins 53BP1, phospho-DNA-PK and phospho-ATM to gH2AX focal sites, while the rate of phosphorylated ATM/ATR substrate accumulation was the same as that in young cells. CONCLUSIONS: Our results demonstrate an impairment of DSB repair in prematurely aged Syrian hamster fibroblasts in comparison with young fibroblasts, suggesting age-related differences in response to BL therapy.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Bleomycin/pharmacology , Cellular Senescence/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Repair/genetics , Histones/metabolism , Aging, Premature/genetics , Animals , Antibodies/immunology , Ataxia Telangiectasia Mutated Proteins/genetics , Cricetinae , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , G1 Phase/genetics , Histones/genetics , Histones/immunology , Mesocricetus/genetics , Phosphorylation , Protein Binding/physiology , Resting Phase, Cell Cycle/genetics , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/metabolism
12.
Mol Cytogenet ; 5(1): 37, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22938505

ABSTRACT

BACKGROUND: Rodents have been reported to contain large arrays of interstitial telomeric sequences (TTAGGG)n (ITS) located in pericentromeric heterochromatin. The relative sizes of telomeric sequences at the ends of chromosomes (TS) and ITS in Syrian hamster (Mesocricetus auratus) cells have not been evaluated yet, as well as their structural organization in interphase nuclei. RESULTS: FISH signal distribution analysis was performed on DAPI-banded metaphase chromosomes of Syrian hamster fibroblasts, and relative lengths of telomere signals were estimated. Besides well-distinguished FISH signals from ITS located on chromosomes ##2, 4, 14, 20 and X that we reported earlier, low-intensity FISH signals were visualized with different frequency of detection on all other metacentric chromosomes excluding chromosome #21. The analysis of 3D-distribution of TS in interphase nuclei demonstrated that some TS foci formed clearly distinguished associations (2-3 foci in a cluster) in the nuclei of cells subjected to FISH or transfected with the plasmid expressing telomeric protein TRF1 fused with GFP. In G0 and G1/early S-phase, the average total number of GFP-TRF1 foci per nucleus was less than that of PNA FISH foci in the corresponding cell cycle phases suggesting that TRF1 overexpression might contribute to the fusion of neighboring telomeres. The mean total number of GFP-TRF1 and FISH foci per nucleus was increased during the transition from G0 to G1/early S-phase that might be the consequence of duplication of some TS. CONCLUSIONS: The relative lengths of TS in Syrian hamster cells were found to be moderately variable. All but one metacentric chromosomes contain ITS in pericentromeric heterochromatin indicating that significant rearrangements of ancestral genome occurred in evolution. Visualization of GFP-TRF1 fibrils that formed bridges between distinct telomeric foci allowed suggesting that telomere associations observed in interphase cells are reversible. The data obtained in the study provide the further insight in the structure and dynamics of telomeric sequences in somatic mammalian cells.

13.
Clin Epigenetics ; 2(2): 283-97, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22704343

ABSTRACT

A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues.

14.
Int Rev Cell Mol Biol ; 277: 217-51, 2009.
Article in English | MEDLINE | ID: mdl-19766971

ABSTRACT

New methods for detecting DNA damage and repair are reviewed and their potential significance is discussed. These include methods based on analysis of DNA damage-induced chromatin modifications, cytological detection of DNA repair synthesis, damage-induced immobilization of repair proteins and living cell imaging. Special attention is paid to current methods of detection of modifications of histones and other proteins associated with DNA double-strand breaks which represent most dangerous genome damage. New methods of analysis of DNA damage and repair may be useful in biodosimetry, early cancer diagnostics and in the analysis of efficiency of cancer radiation therapy and chemotherapy.


Subject(s)
Chemistry Techniques, Analytical/methods , DNA Damage , DNA Repair , Molecular Imaging/methods , Animals , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Humans , Proteins/analysis , Proteins/chemistry , Proteins/metabolism
15.
Chromosome Res ; 15(6): 787-97, 2007.
Article in English | MEDLINE | ID: mdl-17874213

ABSTRACT

Double-strand DNA breaks (DSBs) induced by ionizing radiation can be visualized in human cells using antibodies against Ser-139 phosphorylated histone H2AX (gamma-H2AX). Large gamma-H2AX foci are seen in the nucleus fixed 1 hour after irradiation and their number corresponds to the number of DSBs, allowing analysis of these genome lesions after low doses. We estimated whether transcription is affected in chromatin domains containing gamma-H2AX by following in vivo incorporation of 5-bromouridine triphosphate (BrUTP) loaded by cell scratching (run-on assay). We found that BrUTP incorporation is strongly suppressed at gamma-H2AX foci, suggesting that H2AX phosphorylation inhibits transcription. This is not caused by preferential association of gamma-H2AX foci with constitutive or facultative heterochromatin, which was visualized in irradiated cells using antibodies against histone H3 trimethylated at lysine-9 (H3-K9m3) or histone H3 trimethylated at lysine-27 (H3-K27m3). Apparently, formation of gamma-H2AX induces changes of chromatin that inhibit assembly of transcription complexes without heterochromatin formation. Inhibition of transcription by phosphorylation of histone H2AX can decrease chromatin movement at DSBs and frequency of misjoining of DNA ends.


Subject(s)
Cell Nucleus/metabolism , Histones/metabolism , Transcription, Genetic , Bromodeoxyuridine/pharmacology , Cell Line, Tumor , DNA Methylation , Deoxyuracil Nucleotides/metabolism , Fibroblasts/metabolism , Histones/chemistry , Humans , Microscopy, Confocal , Phosphorylation
16.
Biochem Biophys Res Commun ; 358(2): 650-4, 2007 Jun 29.
Article in English | MEDLINE | ID: mdl-17498657

ABSTRACT

Double-strand breaks in mammalian DNA lead to rapid phosphorylation of C-terminal serines in histone H2AX (gamma-H2AX) and formation of large nuclear gamma-H2AX foci. After DNA repair these foci disappear, but molecular mechanism of elimination of gamma-H2AX foci remains unclear. H2AX protein can be phosphorylated and dephosphorylated in vitro in the absence of chromatin. Here, we compared global exchange of GFP-H2AX with kinetics of formation and elimination of radiation-induced gamma-H2AX foci. Maximal number of gamma-H2AX foci is observed one hour after irradiation, when approximately 20% of GFP-H2AX is exchanged suggesting that formation of the foci mostly occurs by in situ H2AX phosphorylation. However, slow elimination of gamma-H2AX foci is weakly affected by an inhibitor of protein phosphatases calyculin A which is known as an agent suppressing dephosphorylation of gamma-H2AX. This indicates that elimination of gamma-H2AX foci may be independent of dephosphorylation of H2AX which can occur after its removal from the foci by exchange.


Subject(s)
DNA Damage/physiology , DNA/genetics , DNA/radiation effects , Fibroblasts/physiology , Fibroblasts/radiation effects , Histones/genetics , Histones/radiation effects , Animals , Cell Line , Cricetinae , Transcription, Genetic/genetics
17.
J Cell Physiol ; 212(1): 174-81, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17299798

ABSTRACT

Activated T lymphocytes release vesicles, termed exosomes, enriched in cholesterol and exposing phosphatidylserine (PS) at their outer membrane leaflet. Although CD4(+) activated T lymphocytes infiltrate an atherosclerotic plaque, the effects of T cell exosomes on the atheroma-associated cells are not known. We report here that exosomes isolated from the supernatants of activated human CD4(+) T cells enhance cholesterol accumulation in cultured human monocytes and THP-1 cells. Lipid droplets found in the cytosol of exosome-treated monocytes contained both cholesterol ester and free cholesterol. Anti-phosphatidylserine receptor antibodies recognized surface protein on the monocyte plasma membrane and prevented exosome-induced cholesterol accumulation, indicating that exosome internalization is mediated via endogenous phosphatidylserine receptor. The production of proinflammatory cytokine TNF-alpha enhanced in parallel with monocyte cholesterol accumulation. Our data strongly indicate that exosomes released by activated T cells may represent a powerful, previously unknown, atherogenic factor.


Subject(s)
Cholesterol/metabolism , Monocytes/metabolism , Receptors, Cell Surface/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Adult , Antibodies , Atherosclerosis/metabolism , Female , Humans , Male , Middle Aged , Tumor Necrosis Factor-alpha/metabolism
18.
Biochem Biophys Res Commun ; 347(4): 1048-52, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-16857171

ABSTRACT

Phosphorylation of replacement histone H2AX occurs in megabase chromatin domains around double-strand DNA breaks (DSBs) and this modification (called gamma-H2AX) may serve as a useful marker of genome damage and repair in terminally differentiated cells. Here using immunohistochemistry we studied kinetics of gamma-H2AX formation and elimination in the X-irradiated mouse heart and renal epithelial tissues in situ. Unirradiated tissues have 3-5% gamma-H2AX-positive cells and in tissues fixed 1h after X-irradiation gamma-H2AX-positive nuclei are induced in a dose-dependent manner approaching 20-30% after 3 Gy of IR. Analysis of mouse tissues at different times after 3 Gy of IR showed that maximal induction of gamma-H2AX in heart is observed 20 min after IR and then is decreased slowly with about half remaining 23 h later. In renal epithelium maximum of the gamma-H2AX-positive cells is observed 40 min after IR and then decreases to control values in 23 h. This indicates that there are significant variations between non-proliferating mammalian tissues in the initial H2AX phosphorylation rate as well as in the rate of gamma-H2AX elimination after X-irradiation, which should be taken into account in the analysis of radiation responses.


Subject(s)
DNA Damage/physiology , Histones/metabolism , Myocardium/cytology , Animals , Cell Differentiation , Female , Heart/radiation effects , Immunohistochemistry , Kidney/metabolism , Kidney/radiation effects , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Phosphorylation , Whole-Body Irradiation , X-Rays
19.
Mol Biol Cell ; 16(5): 2518-28, 2005 May.
Article in English | MEDLINE | ID: mdl-15758026

ABSTRACT

Originally detected in fixed cells, DNA replication foci (RFi) were later visualized in living cells by using green fluorescent protein (GFP)-tagged proliferating cell nuclear antigen (PCNA) and DNA ligase I. It was shown using fluorescence redistribution after photobleaching (FRAP) assay that focal GFP-PCNA slowly exchanged, suggesting the existence of a stable replication holocomplex. Here, we used the FRAP assay to study the dynamics of the GFP-tagged PCNA-binding proteins: Flap endonuclease 1 (Fen1) and DNA polymerase eta (Pol eta). We also used the GFP-Cockayne syndrome group A (CSA) protein, which does associate with transcription foci after DNA damage. In normal cells, GFP-Pol eta and GFP-Fen1 are mobile with residence times at RFi (t(m)) approximately 2 and approximately 0.8 s, respectively. GFP-CSA is also mobile but does not concentrate at discrete foci. After methyl methanesulfonate (MMS) damage, the mobile fraction of focal GFP-Fen1 decreased and t(m) increased, but it then recovered. The mobilities of focal GFP-Pol eta and GFP-PCNA did not change after MMS. The mobility of GFP-CSA did not change after UV-irradiation. These data indicate that the normal replication complex contains at least two mobile subunits. The decrease of the mobile fraction of focal GFP-Fen1 after DNA damage suggests that Fen1 exchange depends on the rate of movement of replication forks.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/metabolism , Flap Endonucleases/metabolism , S Phase/physiology , Animals , Base Sequence , Biological Transport, Active/drug effects , Biological Transport, Active/radiation effects , Cell Line , Cell Nucleus/metabolism , Cricetinae , DNA Damage , DNA Repair Enzymes , DNA, Complementary/genetics , DNA-Directed DNA Polymerase/genetics , Flap Endonucleases/genetics , Fluorescence Recovery After Photobleaching , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Kinetics , Methyl Methanesulfonate/toxicity , Proliferating Cell Nuclear Antigen/metabolism , Proteins/genetics , Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription Factors , Transfection , Ultraviolet Rays
20.
DNA Repair (Amst) ; 4(3): 359-66, 2005 Mar 02.
Article in English | MEDLINE | ID: mdl-15661659

ABSTRACT

Double labeling of interphase and metaphase chromosomes by 5-chlorodeoxyuridine (CldU) and 5-iododeoxyuridine (IdU) has been used in studies of the dynamics of DNA replication. Here, we have used this approach and confocal microscopy to analyze sites of DNA repair synthesis during nucleotide excision repair (NER) in quiescent human fibroblasts. Surprisingly, we have found that when both precursors are added at the same time to UV-irradiated cells they label different sites in the nucleus. In contrast, even very short periods of simultaneous IdU+CldU labeling of S-phase cells produced mostly overlapped IdU and CldU replication foci. The differential labeling of repair sites might be due to compartmentalization of I-dUTP and Cl-dUTP pools, or to differential utilization of these thymidine analogs by DNA polymerases delta and epsilon (Poldelta and Polepsilon). To explore the latter possibility we used purified mammalian polymerases to find that I-dUTP is efficiently utilized by both Poldelta and Polepsilon. However, we found that the UV-induced incorporation of IdU was more strongly stimulated by treatment of cells with hydroxyurea than was incorporation of CldU. This indicates that there may be distinct IdU and CldU-derived nucleotide pools differentially affected by inhibition of the ribonucleotide reductase pathway of dNTP synthesis and that is consistent with the view that differential incorporation of IdU and CldU during NER may be caused by compartmentalization of IdU- and CldU-derived nucleotide pools.


Subject(s)
DNA Repair , DNA/metabolism , Deoxyuridine/metabolism , Ultraviolet Rays , Cells, Cultured , DNA Polymerase II/metabolism , DNA Polymerase III/metabolism , Humans , Hydroxyurea/pharmacology , Microscopy, Confocal , S Phase
SELECTION OF CITATIONS
SEARCH DETAIL
...