Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 14(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38671984

ABSTRACT

Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) allows for the study of brain dynamics in health and disease. Cranial muscle activation can decrease the interpretability of TMS-EEG signals by masking genuine EEG responses and increasing the reliance on preprocessing methods but can be at least partly prevented by coil rotation coupled with the online monitoring of signals; however, the extent to which changing coil rotation may affect TMS-EEG signals is not fully understood. Our objective was to compare TMS-EEG data obtained with an optimal coil rotation to induce motor evoked potentials (M1standard) while rotating the coil to minimize cranial muscle activation (M1emg). TMS-evoked potentials (TEPs), TMS-related spectral perturbation (TRSP), and intertrial phase clustering (ITPC) were calculated in both conditions using two different preprocessing pipelines based on independent component analysis (ICA) or signal-space projection with source-informed reconstruction (SSP-SIR). Comparisons were performed with cluster-based correction. The concordance correlation coefficient was computed to measure the similarity between M1standard and M1emg TMS-EEG signals. TEPs, TRSP, and ITPC were significantly larger in M1standard than in M1emg conditions; a lower CCC than expected was also found. These results were similar across the preprocessing pipelines. While rotating the coil may be advantageous to reduce cranial muscle activation, it may result in changes in TMS-EEG signals; therefore, this solution should be tailored to the specific experimental context.

2.
J Pers Med ; 14(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38392587

ABSTRACT

Ultrasound-guided perineural hydrodissection (HD) is a novel technique that has been found to be effective in providing mechanical release of perineural adhesions and decompression of the nerve, reducing inflammation and edema and restoring its physiological function. It has a significant impact on chronic neuropathic pain (20 ± 4 weeks with VAS < 5 or VAS diminished by 2 points after the procedure). Carpal tunnel syndrome (CTS) is a common entrapment mononeuropathy, and its distribution is typically innervated by the median nerve. Patients with mild or moderate CTS may benefit from nonsurgical treatments or conservative therapies. This review was conducted following the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement guidelines. Four investigators assessed each title, abstract, and full-text article for eligibility, with disagreements being resolved by consensus with two experienced investigators. The qualitative assessment of the studies was carried out using the modified Oxford quality scoring system, also known as the modified Jadad score. Furthermore, risk of possible biases was assessed using the Cochrane collaboration tool. The results of this review suggest that US-guided HD is an innovative, effective, well-tolerated, and safe technique (11 out of 923 patients had collateral or side effects after the procedure). However, further studies comparing all drugs and with a larger sample population are required to determine the most effective substance.

3.
Medicina (Kaunas) ; 59(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38138205

ABSTRACT

Background and Objectives: Acute and chronic injuries are frequent in volleyball. Biomechanics of sport-specific tasks can influence the risk of injury, which is also related to specific court positions. We investigated posture at raster-stereography, balance, and dynamic tasks using inertial motion units to find differences between roles, which can be predictive of a higher risk of injury. Materials and Methods: We cross-sectionally evaluated amateur volleyball athletes. Participants were divided into roles as outside hitters, setters, middle blockers, and opposite hitters. We excluded the "libero" position from our analysis. Results: Sixteen players were included in the analysis. A statistically significant difference was found in left lower limb stiffness among the outside hitter and setter groups. Conclusions: Differences in stiffness might be related to the different training and the different abilities among the two groups. Raster-stereography is extending its indications and should be implemented for non-invasive postural analysis. The use of inertial motion units provides objective measurements of variables that could go unrecognized within a clinical evaluation; its use should be considered in injury preventive programs.


Subject(s)
Volleyball , Humans , Athletes
4.
Front Hum Neurosci ; 17: 1247104, 2023.
Article in English | MEDLINE | ID: mdl-37645690

ABSTRACT

Over the past decades, among all the non-invasive brain stimulation (NIBS) techniques, those aiming for neuromodulatory protocols have gained special attention. The traditional neurophysiological outcome to estimate the neuromodulatory effect is the motor evoked potential (MEP), the impact of NIBS techniques is commonly estimated as the change in MEP amplitude. This approach has several limitations: first, the use of MEP limits the evaluation of stimulation to the motor cortex excluding all the other brain areas. Second, MEP is an indirect measure of brain activity and is influenced by several factors. To overcome these limitations several studies have used new outcomes to measure brain changes after neuromodulation techniques with the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). In the present review, we examine studies that use TMS-EEG before and after a single session of neuromodulatory TMS. Then, we focused our literature research on the description of the different metrics derived from TMS-EEG to measure the effect of neuromodulation.

5.
Brain Sci ; 11(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499330

ABSTRACT

Electroencephalographic (EEG) signals evoked by transcranial magnetic stimulation (TMS) are usually recorded with passive electrodes (PE). Active electrode (AE) systems have recently become widely available; compared to PE, they allow for easier electrode preparation and a higher-quality signal, due to the preamplification at the electrode stage, which reduces electrical line noise. The performance between the AE and PE can differ, especially with fast EEG voltage changes, which can easily occur with TMS-EEG; however, a systematic comparison in the TMS-EEG setting has not been made. Therefore, we recorded TMS-evoked EEG potentials (TEPs) in a group of healthy subjects in two sessions, one using PE and the other using AE. We stimulated the left primary motor cortex and right medial prefrontal cortex and used two different approaches to remove early TMS artefacts, Independent Component Analysis and Signal Space Projection-Source Informed Recovery. We assessed statistical differences in amplitude and topography of TEPs, and their similarity, by means of the concordance correlation coefficient (CCC). We also tested the capability of each system to approximate the final TEP waveform with a reduced number of trials. The results showed that TEPs recorded with AE and PE do not differ in amplitude and topography, and only few electrodes showed a lower-than-expected CCC between the two methods of amplification. We conclude that AE are a viable solution for TMS-EEG recording.

6.
J Neurosci ; 40(24): 4788-4796, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32430296

ABSTRACT

In humans, γ oscillations in cortical motor areas reflect asynchronous synaptic activity and contribute to plasticity processes. In Parkinson's disease (PD), γ oscillatory activity in the basal ganglia-thalamo-cortical network is altered and the LTP-like plasticity elicited by intermittent theta burst stimulation (iTBS) is reduced in the primary motor cortex (M1). In this study, we tested whether transcranial alternating current stimulation (tACS) delivered at γ frequency promotes iTBS-induced LTP-like plasticity in M1 in PD patients. Sixteen patients (OFF condition) and 16 healthy subjects (HSs) underwent iTBS during γ-tACS (iTBS-γ tACS) and during sham-tACS (iTBS-sham tACS) in two sessions. Motor-evoked potentials (MEPs) evoked by single-pulse transcranial magnetic stimulation and short-interval intracortical inhibition (SICI) were recorded before and after the costimulation. A subgroup of patients also underwent iTBS during ß tACS. iTBS-sham tACS facilitated single-pulse MEPs in HSs, but not in patients. iTBS-γ tACS induced a larger MEP facilitation than iTBS-sham tACS in both groups, with similar values in patients and HSs. In patients, SICI improved after iTBS-γ tACS. The effect produced by iTBS-γ tACS on single-pulse MEPs correlated with disease duration, while changes in SICI correlated with Unified Parkinson's Disease Rating Scale Part III scores. The effect of iTBS-ß tACS on both single-pulse MEPs and SICI was similar to that obtained in the iTBS-sham tACS session. Our data suggest that γ oscillations have a role in the pathophysiology of the abnormal LTP-like plasticity in PD. Entraining M1 neurons at the γ rhythm through tACS may be an effective method to restore impaired plasticity.SIGNIFICANCE STATEMENT In Parkinson's disease, the LTP-like plasticity of the primary motor cortex is impaired, and γ oscillations are altered in the basal ganglia-thalamo-cortical network. Using a combined transcranial magnetic stimulation-transcranial alternating current stimulation approach (iTBS-γ tACS costimulation), we demonstrate that driving γ oscillations restores the LTP-like plasticity in patients with Parkinson's disease. The effects correlate with clinical characteristics of patients, being more evident in less affected patients and weaker in patients with longer disease duration. These findings suggest that cortical γ oscillations play a beneficial role in modulating the LTP-like plasticity of M1 in Parkinson's disease. The iTBS-γ tACS approach may be potentially useful in rehabilitative settings in patients.


Subject(s)
Gamma Rhythm/physiology , Motor Cortex/physiopathology , Neuronal Plasticity/physiology , Parkinson Disease/physiopathology , Transcranial Direct Current Stimulation , Aged , Aged, 80 and over , Evoked Potentials, Motor/physiology , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...