Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 188(3): 259-66, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25450594

ABSTRACT

In mammalian cells, active ribosomal genes produce the 18S, 5.8S and 28S RNAs of ribosomal particles. Transcription levels of these genes are very high throughout interphase, and the cell needs a special strategy to avoid collision of the DNA polymerase and RNA polymerase machineries. To investigate this problem, we measured the correlation of various replication and transcription signals in the nucleoli of HeLa, HT-1080 and NIH 3T3 cells using a specially devised software for analysis of confocal images. Additionally, to follow the relationship between nucleolar replication and transcription in living cells, we produced a stable cell line expressing GFP-RPA43 (subunit of RNA polymerase I, pol I) and RFP-PCNA (the sliding clamp protein) based on human fibrosarcoma HT-1080 cells. We found that replication and transcription signals are more efficiently separated in nucleoli than in the nucleoplasm. In the course of S phase, separation of PCNA and pol I signals gradually increased. During the same period, separation of pol I and incorporated Cy5-dUTP signals decreased. Analysis of single molecule localization microscopy (SMLM) images indicated that transcriptionally active FC/DFC units (i.e. fibrillar centers with adjacent dense fibrillar components) did not incorporate DNA nucleotides. Taken together, our data show that replication of the ribosomal genes is spatially separated from their transcription, and FC/DFC units may provide a structural basis for that separation.


Subject(s)
Cell Nucleolus/metabolism , DNA Replication , Transcription, Genetic , Cell Line , Cell Nucleolus/genetics , HeLa Cells , Humans
2.
Folia Biol (Praha) ; 60 Suppl 1: 76-84, 2014.
Article in English | MEDLINE | ID: mdl-25369346

ABSTRACT

Every day, genomes are affected by genotoxic factors that create multiple DNA lesions. Several DNA repair systems have evolved to counteract the deleterious effects of DNA damage. These systems include a set of DNA repair mechanisms, damage tolerance processes, and activation of cell-cycle checkpoints. This study describes selected confocal microscopy techniques that investigate DNA damage-related nuclear events after UVA- and γ-irradiation and compare the DNA damage response (DDR) induced by the two experimental approaches. In both cases, we observed induction of the nucleotide excision repair (NER) pathway and formation of localized double-strand breaks (DSBs). This was confirmed by analysis of cyclobutane pyrimidine dimers (CPDs) in the DNA lesions and by increased levels of γH2AX and 53BP1 proteins in the irradiated genome. DNA damage by UVA-lasers was potentiated by either BrdU or Hoechst 33342 pre-sensitization and compared to non-photosensitized cells. DSBs were also induced without BrdU or Hoechst 33342 pre-treatment. Interestingly, no cyclobutane pyrimidine dimers (CPDs) were detected after 405 nm UVA laser micro-irradiation in non-photosensitized cells. The effects of UVA and γ-irradiation were also studied by silver staining of nucleolar organizer regions (AgNORs). This experimental approach revealed changes in the morphology of nucleoli after genome injury. Additionally, to precisely characterize DDR in locally induced DNA lesions, we analysed the kinetics of the 53BP1 protein involved in DDR by fluorescence recovery after photobleaching (FRAP).


Subject(s)
Cell Nucleolus/radiation effects , DNA Damage , Gamma Rays , Microscopy/methods , Ultraviolet Rays , Animals , Antigens, Nuclear , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Histones/metabolism , Kinetics , Luminescent Proteins/metabolism , Mice , Pyrimidine Dimers/metabolism , Tumor Suppressor p53-Binding Protein 1 , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...