Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Bull Exp Biol Med ; 176(5): 631-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38733477

ABSTRACT

We studied the influence of DMSO administered ad libitum with drinking water in concentrations of 0.01, 0.1, and 1% for 4 and 6 weeks on pain sensitivity, motor coordination, and myelin content in the corpus callosum of C57BL/6 mice. After 6-week administration, DMSO in all studied concentrations decreased myelin content in the corpus callosum. Moreover, 4-week administration of 0.1% DMSO and 6-week administration of 1% DMSO increased the latency to fall in the rotarod test by 3.1 (p<0.05) and 5.1 (p<0.001) times, respectively. After 4-week administration of DMSO in concentrations of 0.01 and 0.1%, the latency of the tail flick response increased by 2.1 (p<0.05) and 1.8 times (p<0.001), respectively. Administration of DMSO in concentrations of 0.01 and 1% for 6 weeks led to a decrease of this parameter by 2.7 (p<0.05) and 3.8 times (p<0.01), respectively. Thus, DMSO in all studied concentrations decreased myelin content in the corpus callosum of C57BL/6 mice and modified motor coordination and pain sensitivity of animals.


Subject(s)
Corpus Callosum , Dimethyl Sulfoxide , Mice, Inbred C57BL , Myelin Sheath , Animals , Dimethyl Sulfoxide/administration & dosage , Dimethyl Sulfoxide/toxicity , Corpus Callosum/drug effects , Corpus Callosum/pathology , Mice , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Male , Rotarod Performance Test , Pain Threshold/drug effects
2.
Patol Fiziol Eksp Ter ; (2): 22-6, 2012.
Article in Russian | MEDLINE | ID: mdl-22708403

ABSTRACT

It was investigated the influence of antiortostatic hipokinesia (ANOC) with different combinations with photothrombosis of prefrontal cortex of rat brain by quantitative measures of passive avoidance reflex and reparative processes on the creation of dikaryons in cortex. Recieved data let to suppose, that ANOC increase ischemic damages and decrease quantity of dikaryons in cortex.


Subject(s)
Avoidance Learning , Brain Ischemia , Cerebral Cortex , Hypokinesia , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Hypokinesia/metabolism , Hypokinesia/pathology , Hypokinesia/physiopathology , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...