Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 586(7829): 440-444, 2020 10.
Article in English | MEDLINE | ID: mdl-32698189

ABSTRACT

Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.


Subject(s)
Heterochromatin/metabolism , Intellectual Disability/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mutation , Adaptive Immunity , Animals , Female , Immunity, Innate , Intellectual Disability/pathology , Methyl-CpG-Binding Protein 2/genetics , Mice , Neurons/metabolism , Neurons/pathology , Phenotype , Rett Syndrome/genetics
2.
Proc Natl Acad Sci U S A ; 116(50): 25293-25303, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31772018

ABSTRACT

Microglia are essential for maintenance of normal brain function, with dysregulation contributing to numerous neurological diseases. Protocols have been developed to derive microglia-like cells from human induced pluripotent stem cells (hiPSCs). However, primary microglia display major differences in morphology and gene expression when grown in culture, including down-regulation of signature microglial genes. Thus, in vitro differentiated microglia may not accurately represent resting primary microglia. To address this issue, we transplanted microglial precursors derived in vitro from hiPSCs into neonatal mouse brains and found that the cells acquired characteristic microglial morphology and gene expression signatures that closely resembled primary human microglia. Single-cell RNA-sequencing analysis of transplanted microglia showed similar cellular heterogeneity as primary human cells. Thus, hiPSCs-derived microglia transplanted into the neonatal mouse brain assume a phenotype and gene expression signature resembling that of resting microglia residing in the human brain, making chimeras a superior tool to study microglia in human disease.


Subject(s)
Brain/physiology , Induced Pluripotent Stem Cells/transplantation , Microglia/transplantation , Animals , Brain/metabolism , Brain/surgery , Gene Expression , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Microglia/metabolism , Phenotype
3.
Hum Mol Genet ; 26(17): 3327-3341, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28595361

ABSTRACT

Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.


Subject(s)
Mitochondria/metabolism , Mitochondria/physiology , Neural Stem Cells/metabolism , Animals , Apoptosis Inducing Factor/metabolism , Brain/metabolism , Cell Differentiation , Cell Proliferation , Cognition , Cognitive Dysfunction/metabolism , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Neurogenesis/genetics , Neurogenesis/physiology , Neurons/metabolism , Signal Transduction
4.
Cell Stem Cell ; 19(2): 232-247, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27237737

ABSTRACT

Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming.


Subject(s)
Cell Lineage , Cell Nucleus/genetics , Mitochondrial Dynamics , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Transcription, Genetic , Adenosine Triphosphate/pharmacology , Animals , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Nucleus/drug effects , Cell Self Renewal/drug effects , Cognition/drug effects , GTP Phosphohydrolases/metabolism , Gene Deletion , Metabolomics , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , NF-E2-Related Factor 2/metabolism , Neural Stem Cells/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects
5.
J Vis Exp ; (95): 51983, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25650557

ABSTRACT

Genetic deletion using the Cre-Lox system in transgenic mouse lines is a powerful tool used to study protein function. However, except in very specific Cre models, deletion of a protein throughout a tissue or cell population often leads to complex phenotypes resulting from multiple interacting mechanisms. Determining whether a phenotype results from disruption of a cell autonomous mechanism, which is intrinsic to the cell in question, or from a non-cell autonomous mechanism, which would result from impairment of that cell's environment, can be difficult to discern. To gain insight into protein function in an in vivo context, in utero electroporation (IUE) enables gene deletion in a small subset of cells within the developing cortex or some other selected brain region. IUE can be used to target specific brain areas, including the dorsal telencephalon, medial telencephalon, hippocampus, or ganglionic eminence. This facilitates observation of the consequences of cell autonomous gene deletion in the context of a healthy environment. The goal of this protocol is to show how IUE can be used to analyze a defect in radial migration in a floxed transgenic mouse line, with an emphasis on distinguishing between the cell autonomous and non-cell autonomous effects of protein deletion. By comparing the phenotype resulting from gene deletion within the entire cortex versus IUE-mediated gene deletion in a limited cell population, greater insight into protein function in brain development can be obtained than by using either technique in isolation.


Subject(s)
Brain/physiology , Cell Movement/physiology , Electroporation/methods , Gene Knockdown Techniques/methods , Neurons/physiology , Retinoblastoma Protein/physiology , Retinoblastoma-Like Protein p107/physiology , Animals , Brain/cytology , Embryo, Mammalian , Female , Gene Deletion , Male , Mice , Mice, Transgenic , Neurons/cytology , Pregnancy , Retinoblastoma Protein/genetics , Retinoblastoma-Like Protein p107/genetics
6.
Cell Stem Cell ; 12(4): 440-52, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23499385

ABSTRACT

The mechanisms through which cell-cycle control and cell-fate decisions are coordinated in proliferating stem cell populations are largely unknown. Here, we show that E2f3 isoforms, which control cell-cycle progression in cooperation with the retinoblastoma protein (pRb), have critical effects during developmental and adult neurogenesis. Loss of either E2f3 isoform disrupts Sox2 gene regulation and the balance between precursor maintenance and differentiation in the developing cortex. Both isoforms target the Sox2 locus to maintain baseline levels of Sox2 expression but antagonistically regulate Sox2 levels to instruct fate choices. E2f3-mediated regulation of Sox2 and precursor cell fate extends to the adult brain, where E2f3a loss results in defects in hippocampal neurogenesis and memory formation. Our results demonstrate a mechanism by which E2f3a and E2f3b differentially regulate Sox2 dosage in neural precursors, a finding that may have broad implications for the regulation of diverse stem cell populations.


Subject(s)
Cell Cycle , E2F3 Transcription Factor/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , SOXB1 Transcription Factors/genetics , Aging/metabolism , Animals , Base Sequence , Cell Count , Cell Cycle/genetics , Cell Lineage/genetics , Cell Proliferation , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Models, Biological , Molecular Sequence Data , Neurogenesis , Promoter Regions, Genetic/genetics , Protein Isoforms/metabolism , SOXB1 Transcription Factors/metabolism
7.
J Proteomics ; 75(6): 1752-63, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22240297

ABSTRACT

Hypertension is a systemic disorder affecting numerous physiological processes throughout the body. As non-alcoholic fatty liver disorder (NAFLD) is a common comorbidity of hypertension in humans, we hypothesized that molecular hepatic physiology would be altered in a model of genetic hypertension. Despite the broad use of the spontaneously hypertensive rat (SHR) model, little is known regarding how hypertension influences hepatic function under basal conditions. In order to determine whether hypertension induces changes in the hepatic protein expression suggestive of early stages of NAFLD, we compared the whole tissue proteome of livers from SHR and Wistar Kyoto (WKY) 16 week old rats using 2DGE and MALDI-TOF MS. Fifteen proteins were identified that display different levels of expression between the SHR and WKY livers: 50% of proteins have mitochondrial or anti-oxidant functions while 20% are involved in lipid metabolism. Quininoid dihydropterin reductase, sulfite oxidase, and glutathione-S-transferase mu 1 were all identified as either undergoing a difference in post-translation modification or a difference in protein abundance in SHR compared to WKY livers. As oxidative stress is a well described component of both NAFLD and hypertension in SHR, the identification of novel changes in protein expression provides possible mechanisms connecting these two pathologies in humans.


Subject(s)
Fatty Liver/physiopathology , Hypertension/physiopathology , Liver/metabolism , Animals , Fatty Liver/etiology , Glutathione Transferase/metabolism , Male , Non-alcoholic Fatty Liver Disease , Oxidative Stress/physiology , Oxidoreductases/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sulfite Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...