Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11093, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750188

ABSTRACT

A chronic nonhealing wound poses a significant risk for infection and subsequent health complications, potentially endangering the patient's well-being. Therefore, effective wound dressings must meet several crucial criteria, including: (1) eliminating bacterial pathogen growth within the wound, (2) forming a barrier against airborne microbes, (3) promoting cell proliferation, (4) facilitating tissue repair. In this study, we synthesized 8 ± 3 nm Ag NP with maleic acid and incorporated them into an electrospun polycaprolactone (PCL) matrix with 1.6 and 3.4 µm fiber sizes. The Ag NPs were anchored to the matrix via electrospraying water-soluble poly(vinyl) alcohol (PVA), reducing the average sphere size from 750 to 610 nm in the presence of Ag NPs. Increasing the electrospraying time of Ag NP-treated PVA spheres demonstrated a more pronounced antibacterial effect. The resultant silver-based material exhibited 100% inhibition of gram-negative Escherichia coli and gram-positive Staphylococcus aureus growth within 6 h while showing non-cytotoxic effects on the Vero cell line. We mainly discuss the preparation method aspects of the membrane, its antibacterial properties, and cytotoxicity, suggesting that combining these processes holds promise for various medical applications.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Escherichia coli , Polyesters , Polyvinyl Alcohol , Silver , Staphylococcus aureus , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Silver/chemistry , Silver/pharmacology , Polyesters/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Vero Cells , Animals , Chlorocebus aethiops , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Metal Nanoparticles/chemistry , Tissue Scaffolds/chemistry , Microbial Sensitivity Tests
2.
Ecotoxicol Environ Saf ; 272: 116088, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38350218

ABSTRACT

This study aims to investigate the in vitro effects of nanoparticles (NPs) produced during the selective laser melting (SLM) of 316 L stainless steel metal powder on the immune response in a human blood model. Experimental data did not reveal effect on viability of 316 L NPs for the tested doses. Functional immune assays showed a significant immunosuppressive effect of NPs. There was moderate stimulation (117%) of monocyte phagocytic activity without significant changes in phagocytic activity and respiratory burst of granulocytes. A significant dose-dependent increase in the levels of the pro-inflammatory cytokine TNF-a was found in blood cultures treated with NPs. On the contrary, IL-8 chemokine levels were significantly suppressed. The levels of the pro-inflammatory cytokine IL-6 were reduced by only a single concentration of NPs. These new findings can minimise potential health risks and indicate the need for more research in this area.


Subject(s)
Nanoparticles , Stainless Steel , Humans , Stainless Steel/pharmacology , Metals , Nanoparticles/toxicity , Cytokines , Printing, Three-Dimensional
3.
ACS Omega ; 7(6): 4850-4858, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35187305

ABSTRACT

A wide range of methods can be used for nature-inspired metallic nanoparticle (NP) synthesis. These syntheses, however, are ongoing in the presence of diverse mixtures of different chemical compounds, and all or only a few of these contribute to resultant particle properties. Herein, the linden (Tilia sp.) inflorescence leachate and pure citric and protocatechuic acids were chosen for Ag-AgCl nanoparticle (NP) synthesis, and the resultant particles were then compared. We focused on the following four issues: (1) preparation of Ag-AgCl NPs using the Tilia sp.-based phytosynthetic protocol, (2) analytical determination of the common phenolic, nonphenolic, and inorganic profiles of three Tilia sp. types from different harvesting locations, (3) preparation of Ag-AgCl NPs using a mixture of citric and protocatechuic acids based on chromatographic evaluation, and (4) comparison of Tilia-based and organic acid-based syntheses. Our research confirms that the Tilia organic and inorganic profiles in biomasses are influenced by the harvesting location, and the three sites influenced both the morphology and final NP size. Our processing method was uniform, and this enabled great Ag-AgCl NP reproducibility for each specific biomass. We were then able to prove that the simplified organic acid-based synthesis produced even smaller NPs than Tilia-based synthesis. These findings provide better understanding of the significant influence on NP final properties resulting from other organic acids contained in the linden.

4.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299367

ABSTRACT

The scope of application of carbon nanomaterials in biomedical, environmental and industrial fields is recently substantially increasing. Since in vitro toxicity testing is the first essential step for any commercial usage, it is crucial to have a reliable method to analyze the potentially harmful effects of carbon nanomaterials. Even though researchers already reported the interference of carbon nanomaterials with common toxicity assays, there is still, unfortunately, a large number of studies that neglect this fact. In this study, we investigated interference of four bio-promising carbon nanomaterials (graphene acid (GA), cyanographene (GCN), graphitic carbon nitride (g-C3N4) and carbon dots (QCDs)) in commonly used LIVE/DEAD assay. When a standard procedure was applied, materials caused various types of interference. While positively charged g-C3N4 and QCDs induced false results through the creation of free agglomerates and intrinsic fluorescence properties, negatively charged GA and GCN led to false signals due to the complex quenching effect of the fluorescent dye of a LIVE/DEAD kit. Thus, we developed a new approach using a specific gating strategy based on additional controls that successfully overcame all types of interference and lead to reliable results in LIVE/DEAD assay. We suggest that the newly developed procedure should be a mandatory tool for all in vitro flow cytometry assays of any class of carbon nanomaterials.


Subject(s)
Carbon/toxicity , Nanostructures/toxicity , Cells, Cultured , Flow Cytometry/methods , Fluorescence , Fluorescent Dyes/toxicity , Graphite/toxicity , Humans , Nitrogen Compounds/toxicity , Quantum Dots/toxicity
5.
Colloids Surf B Biointerfaces ; 202: 111680, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33714189

ABSTRACT

The use of Ag-modified nanomaterials continues to attract attention in biological contamination control, their potential cytotoxicity is often overlooked. Herein, biocompatible carbon nitride is modified with 1 and 5 wt.% Ag and effects of different nanomaterial dose and Ag content on antimicrobial activity and cytotoxicity is studied. Pure Ag nanoparticles and AgNO3 is tested for comparison, together with ten bacterial strains including pan-resistant Pseudomonas aeruginosa. Cytotoxicity is then investigated in three adherent and two suspension human cell lines, and results confirm that cancer adherent cell lines are the most immune lines and human cervical adenocarcinoma cells (HeLa) are more resilient than human lung adenocarcinoma cells (A549). The HeLa remains over 90 % viable even after 24 -h treatment with the highest concentration of 5%Ag/g-C3N4 (300 mg L-1) while A549 sustained viability only up to 100 mg L-1. Higher concentrations then induce cytotoxicity and A549 cell viability decreases. Our results show the importance of complementary testing of cytotoxicity by LIVE/DEAD assay using flow cytometry with more different human cell lines, which might be less immune to tested nanomaterials than HeLa and A549. Combined controls of new antibacterial agent activity tests then provide increased knowledge of their biocompatibility.


Subject(s)
Metal Nanoparticles , Silver , Anti-Bacterial Agents/pharmacology , Humans , Nitriles
6.
RSC Adv ; 11(23): 13980-13991, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-35423911

ABSTRACT

Antibiotics in wastewater represent a growing and worrying menace for environmental and human health fostering the spread of antimicrobial resistance. Titanium dioxide (TiO2) is a well-studied and well-performing photocatalyst for wastewater treatment. However, it presents drawbacks linked with the high energy needed for its activation and the fast electron-hole pair recombination. In this work, TiO2 nanoparticles were decorated with Ag nanoparticles by a facile photochemical reduction method to obtain an increased photocatalytic response under visible light. Although similar materials have been reported, we advanced this field by performing a study of the photocatalytic mechanism for Ag-TiO2 nanoparticles (Ag-TiO2 NPs) under visible light taking in consideration also the rutile phase of the TiO2 nanoparticles. Moreover, we examined the Ag-TiO2 NPs photocatalytic performance against two antibiotics from the same family. The obtained Ag-TiO2 NPs were fully characterised. The results showed that Ag NPs (average size: 23.9 ± 18.3 nm) were homogeneously dispersed on the TiO2 surface and the photo-response of the Ag-TiO2 NPs was greatly enhanced in the visible light region when compared to TiO2 P25. Hence, the obtained Ag-TiO2 NPs showed excellent photocatalytic degradation efficiency towards the two fluoroquinolone-based antibiotics ciprofloxacin (92%) and norfloxacin (94%) after 240 min of visible light irradiation, demonstrating a possible application of these particles in wastewater treatment. In addition, it was also proved that, after five Ag-TiO2 NPs re-utilisations in consecutive ciprofloxacin photodegradation reactions, only a photocatalytic efficiency drop of 8% was observed. Scavengers experiments demonstrated that the photocatalytic mechanism of ciprofloxacin degradation in the presence of Ag-TiO2 NPs is mainly driven by holes and ˙OH radicals, and that the rutile phase in the system plays a crucial role. Finally, Ag-TiO2 NPs showed also antibacterial activity towards Escherichia coli (E. coli) opening the avenue for a possible use of this material in hospital wastewater treatment.

7.
Sci Rep ; 10(1): 21572, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33299014

ABSTRACT

In this work we present experimental results of cross-sectional speed of water flow in narrow cylindrical metal tubes at high pressure gradients up to 1.1 GPa[Formula: see text]m-1. The measurement draws attention to the paradoxical behaviour of flowing water in internal diameters less than 250 [Formula: see text]m. At constant pressure gradient, its cross-section speed decreases with decreasing diameter in accordance with the classical hydrodynamic prediction for turbulent flow in rough cylindrical tube. However for very low diameters below 250 [Formula: see text]m, the cross-section speed rises again and reaches almost the maximum theoretical value of the outflow speed for the appropriate pressure without energy loss caused by contraction or hydraulic friction. Our contribution describes mainly experimental character of the new phenomenon and its motivation is to promptly provide the material for further study to the professional public.

8.
Polymers (Basel) ; 12(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272693

ABSTRACT

In the majority of photocatalytic applications, the photocatalyst is dispersed as a suspension of nanoparticles. The suspension provides a higher surface for the photocatalytic reaction in respect to immobilized photocatalysts. However, this implies that recovery of the particles by filtration or centrifugation is needed to collect and regenerate the photocatalyst. This complicates the regeneration process and, at the same time, leads to material loss and potential toxicity. In this work, a new nanofibrous membrane, g-C3N4/PMMA/PUR, was prepared by the fixation of exfoliated g-C3N4 to polyurethane nanofibers using thin layers of poly(methyl methacrylate) (PMMA). The optimal amount of PMMA was determined by measuring the adsorption and photocatalytic properties of g-C3N4/PMMA/PUR membranes (with a different PMMA content) in an aqueous solution of methylene blue. It was found that the prepared membranes were able to effectively adsorb and decompose methylene blue. On top of that, the membranes evinced a self-cleaning behavior, showing no coloration on their surfaces after contact with methylene blue, unlike in the case of unmodified fabric. After further treatment with H2O2, no decrease in photocatalytic activity was observed, indicating that the prepared membrane can also be easily regenerated. This study promises possibilities for the production of photocatalytic membranes and fabrics for both chemical and biological contaminant control.

9.
Nanomaterials (Basel) ; 9(9)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491918

ABSTRACT

Antimicrobial materials are widely used for inhibition of microorganisms in the environment. It has been established that bacterial growth can be restrained by silver nanoparticles. Combining these with other antimicrobial agents, such as ZnO, may increase the antimicrobial activity and the use of carrier substrate makes the material easier to handle. In the paper, we present an antimicrobial nanocomposite based on silver nanoparticles nucleated in general silicate nanostructure ZnO·mSiO2. First, we prepared the silicate fine net nanostructure ZnO·mSiO2 with zinc content up to 30 wt% by precipitation of sodium water glass in zinc acetate solution. Silver nanoparticles were then formed within the material by photoreduction of AgNO3 on photoactive ZnO. This resulted into an Ag-ZnO·mSiO2 composite with silica gel-like morphology and the specific surface area of 250 m2/g. The composite, alongside with pure AgNO3 and clear ZnO·mSiO2, were successfully tested for antimicrobial activity on both gram-positive and gram-negative bacterial strains and yeast Candida albicans. With respect to the silver content, the minimal inhibition concentration of Ag-ZnO·mSiO2 was worse than AgNO3 only for gram-negative strains. Moreover, we found a positive synergistic antimicrobial effect between Ag and Zn agents. These properties create an efficient and easily applicable antimicrobial material in the form of powder.

10.
J Nanosci Nanotechnol ; 19(5): 2671-2677, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30501765

ABSTRACT

The publication is focused on the problem of nanoparticle aggregation on the sublimation interface between vacuum and rapid frozen liquid dispersion. The main aims are simulation experiments of mathematical modelling of these processes. During lyophilization of rapid frozen liquid dispersion of nanoparticles, a self-organization of nanoparticles occurs. The resulting structure depends on setting the process parameters. According to the current knowledge, they include temperature, vacuum depth, and nanoparticle fraction in the dispersion liquid. On the free sublimation interface, a streamlined flow of dispersion liquid molecules, also referred to as sublimation wind, flows into the vacuum. Lamellar nanoparticle aggregates are formed on the interface surface in this mode, which are gradually torn by the pressure of the sublimation wind. Aggregated materials with very high specific surface area may be formed by these processes. Mathematical modelling of nanoparticle dynamics on two-dimensional sublimation layer is employed to deepen the understanding of basic mechanisms of these aggregation processes. The simulation results are in good agreement with the experimental results of lamellar nanostructure aggregation of bonded globular nanoparticles nC60. Further refinements based on the simulation experiments will allow active control of the process and quality of aggregated nanostructures.

11.
Environ Sci Pollut Res Int ; 25(35): 34839-34850, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29177995

ABSTRACT

Although the nitrous oxide belongs among three of the most contributing greenhouse gases to global warming, it is quite neglected by photocatalytic society. The g-C3N4 and WO3 composites were therefore tested for the photocatalytic decomposition of N2O for the first time. The pure photocatalysts were prepared by simple calcination of precursors, and the composites were prepared by mixing of suspension of pure components in water followed by calcination. The structural (X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy), textural (N2 physisorption), and optical properties (diffuse reflectance spectroscopy, photoluminescence spectroscopy, photoelectrochemical measurements) of all composites were correlated with photocatalytic activity. The experimental results and results from characterization techniques confirmed creation of Z-scheme in the WO3/g-C3N4 composites, which was confirmed by hydroxyl radicals' trapping measurements. The photocatalytic decomposition of N2O was carried out in the presence of UVA light (peak intensity at 365 nm) and the 1:2 WO3/g-C3N4 composite was the most active one, but the photocatalytic activity was just negligibly higher than that of pure WO3. This is caused by relatively weak interaction between WO3 and g-C3N4 which was revealed from XPS.


Subject(s)
Nitrogen Dioxide/chemistry , Photochemical Processes , Catalysis , Hydroxyl Radical , Light , Microscopy, Electron, Transmission , Models, Chemical , Photoelectron Spectroscopy , Tungsten/chemistry , X-Ray Diffraction
12.
J Phys Chem A ; 120(43): 8564-8573, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27701857

ABSTRACT

TiO2/g-C3N4 photocatalysts with the ratio of TiO2 to g-C3N4 ranging from 0.3/1 to 2/1 were prepared by simple mechanical mixing of pure g-C3N4 and commercial TiO2 Evonik P25. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, transmission electron microscopy, photoelectrochemical measurements, and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic reduction of carbon dioxide and photocatalytic decomposition of nitrous oxide. The pure g-C3N4 exhibited the lowest photocatalytic activity in both cases, pointing to a very high recombination rate of charge carriers. On the other hand, the most active photocatalyst toward all the products was (0.3/1)TiO2/g-C3N4. The highest activity is achieved by combination of a number of factors: (i) specific surface area, (ii) adsorption edge energy, (iii) crystallite size, and (iv) efficient separation of the charge carriers, where the efficient charge separation is the most decisive parameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...