Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; : e2400369, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923170

ABSTRACT

The self-plasticization, i.e., the increase in the polymer chains' mobility by including its monomer, has a major impact on a polymer's structural, thermal, and mechanical properties. In this study, differential scanning calorimetry (DSC), optical and Raman microscopies, thermo-mechanical analysis (TMA), size exclusion chromatography equipped with a multi-angle light scattering detector (SEC-MALS), and X-ray diffraction analysis (XRD) are used to investigate the effect of thermally induced self-plasticization of poly-(p-dioxanone), PDX, on the crystal growths from the amorphous and molten states. Significant changes in the crystallization behavior and mechanical properties of PDX are found only for samples self-plasticized at the depolymerization temperature (Td) above 150 °C. The intense self-plasticization leads to the decrease of the crystallization temperature, increase of the crystal growth rapidity, disappearance of the distinct α→α' polymorphic transition, reduction of the overall melting temperature, and segregation of the redundant monomer. Although the morphology of the crystalline phase has a major impact on the mechanical properties of PDX, the self-plasticization itself does not seem to result in any major changes in the magnitude, localization, or morphology of formed crystallites (these are primarily driven by the temperature of crystal growth). The manifestation of the variable activation energy concept is discussed for the present crystallization data. This article is protected by copyright. All rights reserved.

2.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611796

ABSTRACT

The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol-1 can be attributed to the structural relaxation motions described in terms of the Tool-Narayanaswamy-Moynihan model. Whereas the bulk amorphous GSF is very stable, the presence of mechanical defects and micro-cracks results in partial crystallization initiated by the transition from the glassy to the under-cooled liquid state (at ~80 °C). A key aspect of this crystal growth mode is the presence of a sufficiently nucleated vicinity of the disrupted amorphous phase; the crystal growth itself is a rate-determining step. The main macroscopic (calorimetrically observed) crystallization process occurs in amorphous GSF at 115-135 °C. In both cases, the common polymorph I is dominantly formed. Whereas the macroscopic crystallization of coarse GSF powder exhibits similar activation energy (~235 kJ·mol-1) as that of microscopically observed growth in bulk material, the activation energy of the fine GSF powder macroscopic crystallization gradually changes (as temperature and/or heating rate increase) from the activation energy of microscopic surface growth (~105 kJ·mol-1) to that observed for the growth in bulk GSF. The macroscopic crystal growth kinetics can be accurately described in terms of the complex mechanism, utilizing two independent autocatalytic Sesták-Berggren processes. Thermal decomposition of GSF proceeds identically in N2 and in air atmospheres with the activation energy of ~105 kJ·mol-1. The coincidence of the GSF melting temperature and the onset of decomposition (both at 200 °C) indicates that evaporation may initiate or compete with the decomposition process.

3.
Phys Chem Chem Phys ; 26(2): 856-872, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38087904

ABSTRACT

Thermally induced physico-chemical transformations in amorphous nimesulide were studied by means of differential scanning calorimetry (DSC), thermogravimetry, and Raman microscopy. The equilibrium glass transition temperature was found to be Tg0 = 10-15 °C, and the relaxation motions were found to be temperature-dependent. Crystal growth from the amorphous phase was found to be crucially dependent on the presence of mechanical defects that serve as centers for heterogeneous nucleation. The large amounts of mechanical defects significantly decrease the activation energy of the macroscopic crystallization; the positions of the crystallization peaks and their asymmetry/shape remain however almost unchanged. At laboratory temperature, powdered nimesulide fully crystallizes within several hours, with an absolute majority of the crystalline phase being formed as the thermodynamically stable form I polymorph. Amorphous nimesulide does not crystallize from the free smooth surface (no trace of formed crystallites was found by optical microscopy after 30 days at laboratory temperature). Nimesulide was found to be very stable at temperatures above its melting point of 147.5 °C; thermal degradation starts to proceed slowly at 200 °C. Mutual correlations between the macroscopic and microscopic crystal growth processes and between the viscous flow and structural relaxation motions were discussed based on the values of the corresponding activation energies. A link between the cooperativity of structural domains, parameters of the Tool-Narayanaswamy-Moynihan relaxation model, and microscopic crystal growth was proposed.

4.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003465

ABSTRACT

The influence of partial crystallinity on the structural relaxation behavior of low-molecular organic glasses is, contrary to, e.g., polymeric materials, a largely unexplored territory. In the present study, differential scanning calorimetry was used to prepare a series of amorphous indomethacin powders crystallized to various extents. The preparations stemmed from the two distinct particle size fractions: 50-125 µm and 300-500 µm. The structural relaxation data from the cyclic calorimetric measurements were described in terms of the phenomenological Tool-Narayanaswamy-Moynihan model. For the 300-500 µm powder, the crystalline phase forming dominantly on the surface led to a monotonous decrease in the glass transition by ~6 °C in the 0-70% crystallinity range. The activation energy of the relaxation motions and the degree of heterogeneity within the relaxing matrix were not influenced by the increasing crystallinity, while the interconnectivity slightly increased. This behavior was attributed to the release of the quenched-in stresses and to the consequent slight increase in the structural interconnectivity. For the 50-125 µm powder, distinctly different relaxation dynamics were observed. This leads to a conclusion that the crystalline phase grows throughout the bulk glassy matrix along the internal micro-cracks. At higher crystallinity, a sharp increase in Tg, an increase in interconnectivity, and an increase in the variability of structural units engaged in the relaxation motions were observed.


Subject(s)
Indomethacin , Crystallization , Indomethacin/chemistry , Powders , Temperature , Calorimetry, Differential Scanning
5.
Front Plant Sci ; 14: 1248978, 2023.
Article in English | MEDLINE | ID: mdl-38034577

ABSTRACT

Grapevines are economically important woody perennial crops widely cultivated for their fruits that are used for making wine, grape juice, raisins, and table grapes. However, grapevine production is constantly facing challenges due to climate change and the prevalence of pests and diseases, causing yield reduction, lower fruit quality, and financial losses. To ease the burden, continuous crop improvement to develop superior grape genotypes with desirable traits is imperative. Polyploidization has emerged as a promising tool to generate genotypes with novel genetic combinations that can confer desirable traits such as enhanced organ size, improved fruit quality, and increased resistance to both biotic and abiotic stresses. While previous studies have shown high polyploid induction rates in Vitis spp., rigorous screening of genotypes among the produced polyploids to identify those exhibiting desired traits remains a major bottleneck. In this perspective, we propose the integration of the genomic selection approach with omics data to predict genotypes with desirable traits among the vast unique individuals generated through polyploidization. This integrated approach can be a powerful tool for accelerating the breeding of grapevines to develop novel and improved grapevine varieties.

6.
Pharm Res ; 40(9): 2253-2268, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37610622

ABSTRACT

PURPOSE: Affinisol HPMC HME is a new popular form of hypromellose specifically designed for the hot melt extrusion and 3D printing of pharmaceutical products. However, reports of its thermal stability include only data obtained under inert N2 atmosphere, which is not consistent with the common pharmaceutical practice. Therefore, detailed investigation of its real-life thermal stability in air is paramount for identification of potential risks and limitations during its high-temperature processing. METHODS: In this work, the Affinisol HPMC HME 15LV powder as well as extruded filaments will be investigated by means of thermogravimetry, differential scanning calorimetry and infrared spectroscopy with respect to its thermal stability. RESULTS: The decomposition in N2 was proceeded in accordance with the literature data and manufacturer's specifications: onset at ~260°C at 0.5°C·min-1, single-step mass loss of 90-95%. However, in laboratory or industrial practice, high-temperature processing is performed in the air, where oxidation-induced degradation drastically changes. The thermogravimetric mass loss in air proceeded in three stages: ~ 5% mass loss with onset at 150°C, ~ 70% mass loss at 200°C, and ~ 15% mass loss at 380°C. Diffusion of O2 into the Affinisol material was identified as the rate-determining step. CONCLUSION: For extrusion temperatures ≥170°C, Affinisol exhibits a significant degree of degradation within the 5 min extruder retention time. Hot melt extrusion of pure Affinisol can be comfortably performed below this temperature. Utilization of plasticizers may be necessary for safe 3D printing.


Subject(s)
Chemistry, Pharmaceutical , Hot Melt Extrusion Technology , Temperature , Chemistry, Pharmaceutical/methods , Hot Temperature , Solubility , Printing, Three-Dimensional
7.
Heliyon ; 9(7): e17882, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539305

ABSTRACT

Vine-growing for the production of wine constitutes one of the major areas of agriculture of Czechia, and in recent years it has been qualitatively improved. The purpose of this study is to express the effects of climate change on the structure of wine production and consumption in the Czech Republic in connection with the growing local popularity of white wine consumption. The current consumer preferences of wine consumers in the Czech Republic (characterized by the growing popularity of white wines) are not in line with the effects of future climate change associated with the assumption of growing vine varieties suitable for the production of red wines. The methodology of the following study is based especially on the evaluation of statistical data about vine growing and wine production of Czechia and a research investigation about consumers' preferences in the consumption of wines in Czechia. The effect of long-term climate change in the region are likely to lead to an increase in growing areas, especially in favour of vine varieties suitable for the production of red or rosé wines. The harvest of wine grapes, the hectare yield of grapes and the production of wine in Czechia do not show a significant development trend in the long-term time series of 2000-2019. Thus, in the future, the development of viticulture in Czechia will be influenced mainly by the location of the planted area of vineyards or the development of consumer habits and preferences.

8.
Molecules ; 28(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36838556

ABSTRACT

Differential scanning calorimetry and Raman spectroscopy were used to study the nonisothermal and isothermal crystallization behavior of amorphous indomethacin powders (with particle sizes ranging from 50 to 1000 µm) and their dependence on long-term storage conditions, either 0-100 days stored freely at laboratory ambient temperatures and humidity or placed in a desiccator at 10 °C. Whereas the γ-form polymorph always dominated, the accelerated formation of the α-form was observed in situations of heightened mobility (higher temperature and heating rate), increased amounts of mechanically induced defects, and prolonged free-surface nucleation. A complex crystallization behavior with two separated crystal growth modes (originating from either the mechanical defects or the free surface) was identified both isothermally and nonisothermally. The diffusionless glass-crystal (GC) crystal growth was found to proceed during the long-term storage at 10 °C and zero humidity, at the rate of ~100 µm of the γ-form surface crystalline layer being formed in 100 days. Storage at the laboratory temperature (still below the glass transition temperature) and humidity led only to a negligible/nondetectable GC growth for the fine indomethacin powders (particle size below ~150 µm), indicating a marked suppression of GC growth by the high density of mechanical defects under these conditions. The freely stored bulk material with no mechanical damage and a smooth surface exhibited zero traces of GC growth (as confirmed by microscopy) after >150 days of storage. The accuracy of the kinetic predictions of the indomethacin crystallization behavior was rather poor due to the combined influences of the mechanical defects, competing nucleation, and crystal growth processes of the two polymorphic phases as well as the GC growth complex dependence on the storage conditions within the vicinity of the glass transition temperature. Performing paired isothermal and nonisothermal kinetic measurements is thus highly recommended in macroscopic crystallization studies of drugs with similarly complicated crystal growth behaviors.


Subject(s)
Indomethacin , Crystallization , Indomethacin/chemistry , Temperature , Transition Temperature , Particle Size , Calorimetry, Differential Scanning
9.
Molecules ; 27(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080433

ABSTRACT

Non-isothermal differential scanning calorimetry (DSC) was used to study the influences of particle size (daver) and heating rate (q+) on the structural relaxation, crystal growth and decomposition kinetics of amorphous indomethacin. The structural relaxation and decomposition processes exhibited daver-independent kinetics, with the q+ dependences based on the apparent activation energies of 342 and 106 kJ·mol-1, respectively. The DSC-measured crystal growth kinetics played a dominant role in the nucleation throughout the total macroscopic amorphous-to-crystalline transformation: the change from the zero-order to the autocatalytic mechanism with increasing q+, the significant alteration of kinetics, with the storage below the glass transition temperature, and the accelerated crystallization due to mechanically induced defects. Whereas slow q+ led to the formation of the thermodynamically stable γ polymorph, fast q+ produced a significant amount of the metastable α polymorph. Mutual correlations between the macroscopic and microscopic crystal growth processes, and between the viscous flow and structural relaxation motions, were discussed based on the values of the corresponding activation energies. Notably, this approach helped us to distinguish between particular crystal growth modes in the case of the powdered indomethacin materials. Ediger's decoupling parameter was used to quantify the relationship between the viscosity and crystal growth. The link between the cooperativity of structural domains, parameters of the Tool-Narayanaswamy-Moynihan relaxation model and microscopic crystal growth was proposed.


Subject(s)
Indomethacin , Calorimetry, Differential Scanning , Crystallization , Indomethacin/chemistry , Temperature , Transition Temperature , Viscosity
10.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36015128

ABSTRACT

The present study focused on the more detailed characterization of chitosan-carrageenan-based matrix tablets with respect to their potential utilization for drug targeting in the intestine. The study systematically dealt with the particular stages of the dissolution process, as well as with different views of the physico-chemical processes involved in these stages. The initial swelling of the tablets in the acidic medium based on the combined microscopy-calorimetry point of view, the pH-induced differences in the erosion and swelling of the tested tablets, and the morphological characterization of the tablets are discussed. The dissolution kinetics correlated with the rheological properties and mucoadhesive behavior of the tablets are also reported, and, correspondingly, the formulations with suitable properties were identified. It was confirmed that the formation of the chitosan-carrageenan polyelectrolyte complex may be an elegant and beneficial alternative solution for the drug targeting to the intestine by the matrix tablet.

11.
Pharmaceutics ; 13(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34959404

ABSTRACT

Tablets used for extended drug release commonly contain large amounts of drugs. The corresponding drug release mechanism thus has to be well-known and invariable under numerous conditions in order to prevent any uncontrolled drug release. Particularly important is the stability and invariability of the release mechanism in the presence of alcohol due to the possible occurrence of the dose dumping effect. The effect of 3D printing (3DP) coating on the drug release mechanism and the drug release rate was studied as a possible tool for the prevention of the alcohol-induced dose dumping effect. Three types of matrix tablets (hydrophilic, lipophilic, and hydrophilic-lipophilic) were prepared by the direct compression method and coated using 3DP. The commercial filament of polyvinyl alcohol (PVA) and the filament prepared from hypromellose by hot melt extrusion (HME) were used as coating materials. Both coating materials were characterized by SEM, DSC, Raman spectroscopy, and PXRD during particular stages of the processing/coating procedure. The dissolution behavior of the uncoated and coated tablets was studied in the strongly acidic (pH 1.2) and alcoholic (40% of ethanol) dissolution media. The dissolution tests in the alcoholic medium showed that the Affinisol coating was effective in preventing the dose dumping incidence. The dissolution tests in the acidic dissolution media showed that the Affinisol coating can also be useful for the delayed release of active substances.

12.
Healthcare (Basel) ; 9(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34828554

ABSTRACT

The objective of the paper is to evaluate the quality of systemic change management (CHM) and readiness for change in five Central European countries. The secondary goal is to identify trends and upcoming changes in the field of digital innovations in healthcare. The results show that all compared countries (regardless of their historical context) deal with similar CHM challenges with a rather similar degree of success. A questionnaire distributed to hospitals clearly showed that there is still considerable room for improvement in terms of the use of specific CHM tools. A review focused on digital innovations based on the PRISMA statement showed that there are five main directions, namely, data collection and integration, telemedicine, artificial intelligence, electronic medical records, and M-Health. In the hospital environment, there are considerable reservations in applying change management principles, as well as the absence of a systemic approach. The main factors that must be monitored for a successful and sustainable CHM include a clearly defined and widely communicated vision, early engagement of all stakeholders, precisely set rules, adaptation to the local context and culture, provision of a technical base, and a step-by-step implementation with strong feedback.

13.
Molecules ; 26(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207246

ABSTRACT

Artificial neural networks (ANNs) are a method of machine learning (ML) that is now widely used in physics, chemistry, and material science. ANN can learn from data to identify nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already demonstrated their worth in solving various chemical engineering problems, but applications in pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The present article gives a critical overview and summary of the available literature on applying ANNs in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from these research areas are surveyed. Some approaches from the broad field of chemical engineering are discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve significantly to reach the capabilities of the existing isoconversional and model-fitting methods.

14.
Healthcare (Basel) ; 9(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477819

ABSTRACT

This study aims to calculate the costs of prostate cancer radiotherapy in a regional hospital Department of Radiation Oncology equipped with Three-Dimensional Conformal Radiation Therapy (3D-CRT) and Intensity Modulated Radiation Therapy (IMRT) Volumetric Arc Therapy (VMAT) radiation technology, using activity based costing (ABC), and to compare the costs of both methods at the level of component treatment process activities and with respect to insurance reimbursements. The costing was performed based on a sample of 273 IMRT VMAT patients and 312 3D-CRT patients in a regional hospital in the period from 2018 to 2019. The research has highlighted the necessity to place emphasis on factors that may skew the costing results. The resulting output has been supplemented by a sensitivity analysis, whereas the modeled parameter is represented by the time required for one patient fraction on a linear accelerator and the time the Radiology Assistant needs to prepare the complete radiation plan as part of radiotherapy planning. Moreover, the effects of the received grant, in the form of calculated write-offs, are also considered. The case study uses the example of radiotherapy to demonstrate the potential of ABC and suggests considering the application of this method as an effective management tool for cost and economic evaluation as part of comprehensive hospital assessment under the Hospital-Based Health Technology Assessment (HB-HTA) initiative.

15.
Heliyon ; 6(7): e04371, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32685718

ABSTRACT

Hop-growing has had a long tradition in the Czech Republic, and it remains in the interest of the Czech economy to further develop this agricultural sector. With an almost one-tenth share of the harvest, the Czech Republic is the third largest producer of aroma hops in the world after Germany and the US, which together account for over two-thirds of the hop market. The purpose of this article is to describe the current state of the Czech and global markets in hops, and the position of the dominant company, Chmelarstvi, druzstvo Zatec, on this market. Towards the end of 2017, the area of hop fields in the Czech Republic reached 4,945 ha, which is the most in the last 7 years. Year-over-year, this represents an increase of 3.4%. The increase was caused by the current demand for quality Czech hops and the weak European harvest in 2015. Thus, the storehouses emptied, and breweries' stores all over the world, to which 80% of domestic hop production is supplied, ran out. Since then, demand and prices have increased to a level that has begun to cover the costs of hop production. This has also meant that investments in hop production have increased. With the increasing area of hop fields in the Czech Republic, hop growers have to deal with a significant problem, which is the unavailability of workers.

16.
Eur J Pharm Sci ; 153: 105468, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32679178

ABSTRACT

Non-isothermal differential scanning calorimetry was used to study the influences of particle size and mechanically induced defects on the recrystallization kinetics of amorphous Enzalutamide. Enzalutamide prepared by hot melt extrusion and spray-drying was used as a model material. The recrystallization rate was primarily accelerated by the presence of the processing-damaged surface of the powder particles. The actual surface/volume ratio associated with decreasing particle size fulfilled only a secondary role. Interestingly, higher quench rate during the extrusion led to a formation of thermally less stable material (with the worse stability being manifested via lower activation energy of crystal growth in the amorphous matrix). This can be the consequence of the formation of looser structure more prone to rearrangements. The recrystallization kinetics of the prepared Enzalutamide amorphous materials was described by the two-parameter autocatalytic kinetic model. The modified single-curve multivariate kinetic analysis (optimized for the data obtained at heating rate 0.5 °C•min-1) was used to calculate the extrapolated kinetic predictions of long-term isothermal crystal growth. The predictions were made for the temperatures from the range of drug shelf-life and processing for each particle size fraction. By the combination of the mass-weighted predictions for the individual powder fractions it was possible to obtain a very reasonable (temperature-extrapolated) prediction of the crystallization rate for the as-prepared unsieved powdered amorphous Enzalutamide.


Subject(s)
Hot Temperature , Benzamides , Calorimetry, Differential Scanning , Crystallization , Drug Stability , Kinetics , Nitriles , Particle Size , Phenylthiohydantoin
17.
Phys Chem Chem Phys ; 22(16): 8889-8901, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32289819

ABSTRACT

Differential scanning calorimetry (DSC), thermogravimetry (TG) and in situ XRD were used to study dehydration and consequent decomposition reactions of mixed calcium oxalate hydrates. As the complex dehydration kinetics exhibited certain trends with respect to the applied heating rate, the modified multivariate kinetic analysis approach (based on averaged curve-by-curve optimizations) was employed to obtain a full kinetic description of the data. The Sesták-Berggren equation was used to model the two consequent dehydration reactions. Good agreement was found between the kinetic parameters calculated from the DSC and TG data - approximate values of activation energies were 68 and 81 kJ mol-1 for the trihydrate → monohydrate and monohydrate → anhydride transformations, respectively. A procedural methodology was developed to predict both dehydration kinetics and hydrate content ratios. For the calcium oxalate decomposition the TG technique provided very precise single-step prediction with an activation energy of 180 kJ mol-1. DSC on the other hand provided complex information on joint decomposition and carbon monoxide oxidation reactions - the proposed reaction mechanism includes completion of two reaction paths composed of consequent chemical reactions. A mechanistic view of the complex reaction path is discussed in terms of the diffusion barrier limiting the oxidation step.

18.
Nanoscale ; 12(5): 3351-3358, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31984410

ABSTRACT

In this study, a universal Ge2Sb2Te5 phase change material was sputtered to obtain a layered structure. The crystalline phase of this material was prepared by annealing. SEM (scanning electron microscopy) and HRTEM (high-resolution transmission electron microscopy) images give confirmed that the sputtered Ge2Sb2Te5 thin film in crystalline phase has multiple layers. The layers can be exfoliated by acetone. The thicknesses of acetone-exfoliated crystalline and amorphous flakes are approx. 10-60 nm.

19.
Molecules ; 24(15)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357537

ABSTRACT

It is expected that viscous flow is affecting the kinetic processes in a supercooled liquid, such as the structural relaxation and the crystallization kinetics. These processes significantly influence the behavior of glass being prepared by quenching. In this paper, the activation energy of viscous flow is discussed with respect to the activation energy of crystal growth and the structural relaxation of glassy selenium. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and hot-stage infrared microscopy were used. It is shown that the activation energy of structural relaxation corresponds to that of the viscous flow at the lowest value of the glass transition temperature obtained within the commonly achievable time scale. The temperature-dependent activation energy of crystal growth, data obtained by isothermal and non-isothermal DSC and TMA experiments, as well as direct microscopic measurements, follows nearly the same dependence as the activation energy of viscous flow, taking into account viscosity and crystal growth rate decoupling due to the departure from Stokes-Einstein behavior.


Subject(s)
Glass/chemistry , Selenium/chemistry , Thermodynamics , Algorithms , Chemical Phenomena , Kinetics , Models, Theoretical
20.
J Chem Phys ; 141(22): 224507, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25494760

ABSTRACT

Heat capacity measurements were performed for Se, Se90Te10, Se80Te20, and Se70Te30 materials in the 230-630 K temperature range. Both glassy and crystalline Cp dependences were found to be identical within the experimental error. The compositional dependence of the N-type undercooled liquid Cp evolution was explained on the basis of free-volume theory; vibrational and chemical contributions to heat capacity were found to be roughly similar for all Se-Te compositions. The thermal behavior in the Se-Te chalcogenide system was thoroughly studied: glass transition, cold crystallization, and melting were investigated in dependence on composition and various experimental conditions (heating rate, particle size, and pre-nucleation period). The kinetics of the structural relaxation and crystallization processes are described in terms of the Tool-Narayanaswamy-Moynihan and Johnson-Mehl-Avrami models. The complexity of these processes is thoroughly discussed with regard to the compositionally determined changes of molecular structures. The discussion is conducted in terms of the mutual interplay between the thermodynamics and kinetics in this system.

SELECTION OF CITATIONS
SEARCH DETAIL
...