Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38932201

ABSTRACT

In this study, we investigated the features of co-infection with SARS-CoV-2 and the enterovirus vaccine strain LEV8 of coxsackievirus A7 or enterovirus A71 for Vero E6 cells and Syrian hamsters. The investigation of co-infection with SARS-CoV-2 and LEV-8 or EV-A71 in the cell model showed that a competitive inhibitory effect for these viruses was especially significant against SARS-CoV-2. Pre-infection with enteroviruses in the animals caused more than a 100-fold decrease in the levels of SARS-CoV-2 virus replication in the respiratory tract and more rapid clearance of infectious SARS-CoV-2 from the lower respiratory tract. Co-infection with SARS-CoV-2 and LEV-8 or EV-A71 also reduced the severity of clinical manifestations of the SARS-CoV-2 infection in the animals. Additionally, the histological data illustrated that co-infection with strain LEV8 of coxsackievirus A7 decreased the level of pathological changes induced by SARS-CoV-2 in the lungs. Research into the chemokine/cytokine profile demonstrated that the studied enteroviruses efficiently triggered this part of the antiviral immune response, which is associated with the significant inhibition of SARS-CoV-2 infection. These results demonstrate that there is significant viral interference between the studied strain LEV-8 of coxsackievirus A7 or enterovirus A71 and SARS-CoV-2 in vitro and in vivo.


Subject(s)
COVID-19 , Disease Models, Animal , Enterovirus A, Human , Mesocricetus , SARS-CoV-2 , Virus Replication , Animals , Chlorocebus aethiops , Vero Cells , SARS-CoV-2/physiology , COVID-19/virology , COVID-19/immunology , Enterovirus A, Human/physiology , Enterovirus A, Human/pathogenicity , Coinfection/virology , Lung/virology , Lung/pathology , Humans , Cytokines/metabolism , Cricetinae
2.
Viruses ; 15(8)2023 07 25.
Article in English | MEDLINE | ID: mdl-37631963

ABSTRACT

The Zika virus (ZIKV) is a widespread mosquito-borne pathogen. Phylogenetically, two lineages of ZIKV are distinguished: African and Asian-American. The latter became the cause of the 2015-2016 pandemic, with severe consequences for newborns. In West African countries, the African lineage was found, but there is evidence of the emergence of the Asian-American lineage in Cape Verde and Angola. This highlights the need to not only monitor ZIKV but also sequence the isolates. In this article, we present a case report of Zika fever in a pregnant woman from Guinea identified in 2018. Viral RNA was detected through qRT-PCR in a serum sample. In addition, the seroconversion of anti-Zika IgM and IgG antibodies was detected in repeated blood samples. Subsequently, the virus was isolated from the C6/36 cell line. The detected ZIKV belonged to the African lineage, the Nigerian sublineage. The strains with the closest sequences were isolated from mosquitoes in Senegal in 2011 and 2015. In addition, we conducted the serological screening of 116 blood samples collected from patients presenting to the hospital of Faranah with fevers during the period 2018-2021. As a result, it was found that IgM-positive patients were identified each year and that the seroprevalence varied between 5.6% and 17.1%.


Subject(s)
Culicidae , Zika Virus Infection , Zika Virus , Infant, Newborn , Animals , Female , Pregnancy , Humans , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus/genetics , Guinea/epidemiology , Seroepidemiologic Studies , Immunoglobulin M
3.
Microorganisms ; 11(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677472

ABSTRACT

In this study, we investigated the features of the infectious process by simulating co-infection with SARS-CoV-2 and human adenovirus type 5 (HAdV-5) or influenza A virus (IAV) in vitro and in vivo. The determination of infectious activity of viruses and digital PCR demonstrated that during simultaneous and sequential HAdV-5 followed by SARS-CoV-2 infection in vitro and in vivo, the HAdV-5 infection does not interfere with replication of SARS-CoV-2. The hamsters co-infected and mono-infected with SARS-CoV-2 exhibited nearly identical viral titers and viral loads of SARS-CoV-2 in the lungs. The hamsters and ferrets co-infected by SARS-CoV-2- and IAV demonstrated more pronounced clinical manifestations than mono-infected animals. Additionally, the lung histological data illustrate that HAdV-5 or IAV and SARS-CoV-2 co-infection induces more severe pathological changes in the lungs than mono-infection. The expression of several genes specific to interferon and cytokine signaling pathways in the lungs of co-infected hamsters was more upregulated compared to single infected with SARS-CoV-2 animals. Thus, co-infection with HAdV-5 or IAV and SARS-CoV-2 leads to more severe pulmonary disease in animals.

4.
Photodiagnosis Photodyn Ther ; 33: 102112, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33249118

ABSTRACT

INTRODUCTION: Recently, the COVID-19 pandemic has spread globally, necessitating the development of new methods for its prevention and treatment. The purpose of this study was to evaluate the antiviral activity of photodynamic therapy (PDT) against SARS-CoV-2 in vitro. METHODS: Vero E6 cells and SARS-CoV-2 isolated in Russia were used for PDT with methylene blue (MB) and Radachlorin. A continuous laser with wavelength λ = 662 nm in doses of 16 J/cm2 and 40 J/cm2 laser irradiation was used for PDT of a viral suspension and SARS-CoV-2-infected cells. The direct cytopathogenic effect of SARS-CoV-2 was evaluated via light microscopy to calculate the TCID50 in the samples and perform statistical analysis. RESULTS: Viral suspensions of SARS-CoV-2 that had a TCID50 greater than 103 were inactivated by PDT in the presence of MB and Radachlorin. Vero E6 cells were protected from 104 TCID50 of SARS-CoV-2 by PDT post infection. The range of protective concentrations was 1.0-10.0 µg/ml and 0.5-5.0 µg/ml for MB and Radachlorin, respectively. Additionally, it was found that MB and Radachlorin also possess significant antiviral activity even without PDT. The 50 % inhibitory concentration (IC50) against 102 TCID50 of SARS-CoV-2 was found to be 0.22 and 0.33 µg/mL with the addition of MB and Radachlorin, respectively, to cells concomitantly with virus, whereas in the case of applying the photosensitizers at 3.5 h post infection, the IC50 was 0.6 and 2.0 µg/mL for MB and Radachlorin, respectively. CONCLUSION: PDT shows high antiviral activity against SARS-CoV-2 when combined with MB and Radachlorin in vitro.


Subject(s)
Methylene Blue/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , SARS-CoV-2/drug effects , Animals , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Combinations , Microbiological Techniques , Porphyrins , Vero Cells
5.
Arch Virol ; 162(11): 3355-3362, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28766058

ABSTRACT

Cancer cells develop increased sensitivity to members of many virus families and, in particular, can be efficiently infected and lysed by many low-pathogenic human enteroviruses. However, because of their great genetic heterogeneity, cancer cells display different levels of sensitivity to particular enterovirus strains, which may substantially limit the chances of a positive clinical response. We show that a non-pathogenic strain of coxsackievirus B6 (LEV15) can efficiently replicate to high titers in the malignant human cell lines C33A, DU145, AsPC-1 and SK-Mel28, although it displays much lower replication efficiency in A431 and A549 cells and very limited replication ability in RD and MCF7 cells, as well as in the normal lung fibroblast cell line MRC-5 and the immortalized mammary epithelial cell line MCF10A. By serial passaging in RD, MCF7 and A431 cells, we obtained LEV15 strain variants that had acquired high replication capacity in the appropriate carcinoma cell lines without losing their high replication capability in the original set of cancer cell lines and had limited replication capability in untransformed cells. The strains demonstrated improved oncolytic properties in nude-mouse xenografts. We identified nucleotide changes responsible for the phenotypes and suggest a bioselection approach for a generation of oncolytic virus strains with a wider spectrum of affected tumors.


Subject(s)
Enterovirus B, Human/genetics , Selection, Genetic , Viral Tropism/genetics , Viral Tropism/physiology , Animals , Cell Line, Tumor , Genome, Viral , Humans , Mice , Mice, Nude , Neoplasms, Experimental , Virus Replication
6.
Virology ; 297(2): 163-71, 2002 Jun 05.
Article in English | MEDLINE | ID: mdl-12083816

ABSTRACT

293 and RH cells derived from human embryo kidney were infected by Venezuelan equine encephalitis and tick-borne encephalitis viruses and cDNA libraries representing cellular mRNAs induced or suppressed due to the infection were prepared using suppressive subtractive hybridization. Among the up-regulated clones the RT-PCR and Northern analyses revealed an unusual transcript of the spermidine/spermine N1-acetyltransferase (SSAT) gene that was shown to be an alternatively spliced form containing an additional 110-bp exon. The alternatively spliced transcript is polyadenylated and can be expected to yield only a truncated 71 amino acid polypeptide. This first evidence of the host gene alternatively spliced mRNA induction by RNA viruses raises the questions of its biological role, regulation mechanisms of alternative splicing, and significance for the virus life cycle.


Subject(s)
Acetyltransferases/biosynthesis , Acetyltransferases/genetics , Alternative Splicing , Encephalitis Virus, Venezuelan Equine/pathogenicity , Encephalitis Viruses, Tick-Borne/pathogenicity , Acetyltransferases/chemistry , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Enzyme Induction , Humans , Kidney/cytology , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...