Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 904: 166706, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659560

ABSTRACT

Coastal ecosystems are becoming increasingly threatened by human activities and there is growing appreciation that management must consider the impacts of multiple stressors. Cumulative effects assessments (CEAs) have become a popular tool for identifying the distribution and intensity of multiple human stressors in coastal ecosystems. Few studies, however, have demonstrated strong correlations between CEAs and change in ecosystem condition, questioning its management use. Here, we apply a CEA to the endangered seagrass Posidonia australis in Pittwater, NSW, Australia, using spatial data on known stressors to seagrass related to foreshore development, water quality, vessel traffic and fishing. We tested how well cumulative effects scores explained changes in P. australis extent measured between 2005 and 2019 using high-resolution aerial imagery. A negative correlation between P. australis and estimated cumulative effects scores was observed (R2 = 22 %), and we identified a threshold of cumulative effects above which losses of P. australis became more likely. Using baited remote underwater video, we surveyed fishes over P. australis and non-vegetated sediments to infer and quantify how impacts of cumulative effects to P. australis extent would flow on to fish assemblages. P. australis contained a distinct assemblage of fish, and on non-vegetated sediments the abundance of sparids, which are of importance to fisheries, increased with closer proximity to P. australis. Our results demonstrate the negative impact of multiple stressors on P. australis and the consequences for fish biodiversity and fisheries production across much of the estuary. Management actions aimed at reducing or limiting cumulative effects to low and moderate levels will help conserve P. australis and its associated fish biodiversity and productivity.


Subject(s)
Biodiversity , Ecosystem , Animals , Humans , Australia , Estuaries , Water Quality , Fishes
2.
Sci Total Environ ; 863: 160717, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36528099

ABSTRACT

Anchor scour from shipping is increasingly recognised as a global threat to benthic marine biodiversity, yet no replicated ecological assessment exists for any seabed community. Without quantification of impacts to biota, there is substantial uncertainty for maritime stakeholders and managers of the marine estate on how these impacts can be managed or minimised. Our study focuses on a region in SE Australia with a high proportion of mesophotic reef (>30 m), where ships anchor while waiting to enter nearby ports. Temperate mesophotic rocky reefs are unique, providing a platform for a diversity of biota, including sponges, ahermatypic corals and other sessile invertebrates. They are rich in biodiversity, provide essential food resources, habitat refugia and ecosystem services for a range of economically, as well as ecologically important taxa. We examined seven representative taxa from four phyla (porifera, cnidaria, bryozoan, hydrozoa) across anchored and 'anchor-free' sites to determine which biota and which of their morphologies were most at risk. Using stereo-imagery, we assessed the richness of animal forest biota, morphology, size, and relative abundance. Our analysis revealed striking impacts to animal forests exposed to anchoring with between three and four-fold declines in morphotype richness and relative abundance. Marked compositional shifts, relative to those reefs that were anchor-free, were also apparent. Six of the seven taxonomic groups, most notably sponge morphotypes, exhibited strong negative responses to anchoring, while one morphotype, soft bryozoans, showed no difference between treatments. Our findings confirm that anchoring on reefs leads to the substantial removal of biota, with marked reductions of biodiversity and requires urgent management. The exclusion of areas of high biological value from anchorages is an important first step towards ameliorating impacts and promoting the recovery of biodiversity.


Subject(s)
Coral Reefs , Ecosystem , Animals , Ships , Biodiversity , Invertebrates
3.
Rapid Commun Mass Spectrom ; 37(4): e9435, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36409295

ABSTRACT

RATIONALE: Isotope analysis can be used to investigate the diets of predators based on assimilation of nitrogen and carbon isotopes from prey. Recent work has shown that tissues taken from legs, antennae or abdomen of lobsters can give different indications of diet, but this has never been evaluated for Sagmariasus verreauxi (eastern rock lobster). Work is now needed to prevent erroneous conclusions being drawn about lobster food webs, and undertaking this work could lead to developing non-lethal sampling methodologies. Non-lethal sampling for lobsters is valuable both ethically and for areas of conservation significance such as marine reserves. METHOD: We evaluated this by dissecting 76 lobsters and comparing δ13 C and δ15 N isotope values in antennae, leg and abdomen tissue from the same individuals ranging from 104 to 137 mm carapace length. Stable isotope values were determined using a Europa EA GSL elemental analyser coupled with Hydra 20-20 Isoprime IRMS. RESULTS: We found the abdomen δ13 C values to be lower than other tissues by 0.3 ± 0.2‰ for antennae tissue and 0.1 ± 0.2‰ δ13 C for leg tissues, whereas for δ15 N, no significant difference between tissues was observed. There was no significant effect of lobster size or sex, though we did observe interactions between month and tissue type, indicating that differences may be seasonal. Importantly, the detected range of isotopic variability between tissues is within the range of uncertainty used for discrimination factors in isotopic Bayesian modelling of 0‰-1.0‰ for δ13 C and 3.0‰-4.0‰ for δ15 N. CONCLUSIONS: We show that S. verreauxi can be sampled non-lethally with mathematical corrections applied for δ13 C, whereas any tissue is suitable for δ15 N. Our results indicate that a walking leg is most favourable and would also be the least intrusive for the lobster. The application of non-lethal sampling provides avenues for the contribution of citizen science to understanding lobster food webs and to undertake fieldwork in ecologically sensitive areas such as marine reserves.


Subject(s)
Diet , Nutritional Status , Humans , Bayes Theorem , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...